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Abstract. Long wakes from offshore wind turbine clusters can extend tens of kilometers
downstream, affecting the wind resource of a large area. Given the ability of mesoscale numerical
weather prediction models to capture important atmospheric phenomena and mechanisms
relevant to wake evolution, they are often used to simulate wakes behind large wind turbine
clusters and their impact over a wider region. Yet, uncertainty persists regarding the accuracy
of representing cluster wakes via mesoscale models and their wind turbine parameterizations.
Here, we evaluate the accuracy of the Fitch wind farm parameterization in the Weather Research
and Forecasting model in capturing cluster-wake effects using two different options to represent
turbulent mixing in the planetary boundary layer. To this end, we compare operational data
from an offshore wind farm in the North Sea that is fully or partially waked by an upstream
array against high-resolution mesoscale simulations. In general, we find that mesoscale models
accurately represent the effect of cluster wakes on front-row turbines of a downstream wind
farm. However, the same models may not accurately capture cluster-wake effects on an entire
downstream wind farm, due to misrepresenting internal-wake effects.

1. Introduction
Wakes from offshore wind turbine clusters, also referred to as cluster wakes, can propagate
long distances, reducing the power production of downstream wind farms [1, 2]. Power losses
associated with the effect of cluster wakes have historically been underestimated, leading to
uncertainty in energy yield estimates [3].

Analytical and numerical models can be used to estimate losses from cluster wakes and reduce
uncertainty in wind farms’ energy production assessments. Due to their low computational
cost, engineering wake models are commonly used to quantify both wake and power losses.
However, these simplified models do not account for some key physical mechanisms that can
modify wake evolution in an offshore environment [4, 5]. High-fidelity simulations, like large-eddy
simulations (LES), can provide a more complete representation of wake physics [6]; however, at
a considerably higher computational cost. Mesoscale numerical weather prediction models, on
the other hand, represent well the physical conditions (such as atmospheric stability) that may
impact wake evolution—and at a lower computational cost than LES. Nevertheless, uncertainty
persists regarding the precision of mesoscale models in accurately representing the impact of
wind turbines in the atmospheric boundary layer [7, 8, 9, 10].
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Mesoscale simulations rely on the assumption that the size of the most energetic turbulent
structures (l) is much smaller than the horizontal grid spacing (∆x) of the model (i.e., ∆x >> l);
as such, the effects of turbulence are parameterized. Vertical turbulence mixing at the subgrid
scale is typically modeled by assuming horizontal homogeneity using planetary boundary-layer
(PBL) parameterizations. In coarse mesoscale simulations (∆x ∼ 10 km), the horizontal
gradients of momentum and heat are small compared to their vertical gradients. However,
in high-resolution mesoscale simulations (∆x ∼ l), commonly referred to as gray zone or
terra incognita simulations, the most energetic turbulent eddies are not fully parameterized
and horizontal gradients of mean quantities become important [11, 12, 13]. Wind turbine
and wind farm wakes are characterized by large horizontal and vertical momentum gradients.
Consequently, horizontal gradients of turbulence statistics become non-negligible and the three-
dimensional effects of turbulence should be considered. In addition, turbine-scale effects (i.e.,
momentum extraction and enhanced turbulence mixing), which are on the order of 100 m,
must also be parameterized. Wind turbines in mesoscale models are typically parameterized as
momentum sinks, such as in the Fitch Wind Farm Parameterization (WFP) [14] and the Explicit
Wake Parameterization (EWP) [15], or as enhanced surface roughness [16], which misrepresents
the wake structure downstream of the turbines [17].

In this study, we evaluate the ability of the Fitch WFP to represent wakes from offshore wind
turbines. In particular, we investigate its ability—when used in conjunction with two different
PBL schemes, namely the MYNN [18] and the three-dimensional (3D) PBL [13, 19] schemes—
to estimate power losses due to external and internal wakes as compared with operational data
from an offshore wind farm. The remainder of this paper is organized as follows. In Section 2,
we describe the wind farm operational data used to validate the mesoscale simulations. Section
3 provides an overview of the numerical methods employed herein. The climatology of winds
around the wind farms of interest is outlined in Section 4. The effects of cluster wakes on
downstream wind farms is detailed in Section 5, and a summary and next steps are provided in
Section 6.

2. Wind turbine power data
We use wind turbine operational data from offshore wind farms in the North Sea to validate
cluster-wake effects in mesoscale models. Specifically, we assess the interaction between
the Westermost Rough and Humber Gateway wind farms. Westermost Rough is located
approximately 19 km northwest of the Humber Gateway wind farm (Figure 1). The Westermost
Rough wind farm comprises 35 Siemens 6-MW wind turbines with hub height at 102 m and
154-m rotor diameter. The Humber Gateway wind farm comprises 73 Vestas 3-MW wind
turbines with hub height at 80 m and 112-m rotor diameter. Turbine power data from the
Supervisory Control and Data Acquisition system (SCADA) from Westermost Rough between
January and December, 2017, are used to validate power production estimates calculated by the
mesoscale model. Power production, nacelle wind speed, turbine yaw angle, and fault conditions
are provided by the wind farm operator for each turbine as 10-min averages. All turbines in
Humber Gateway are assumed to be operating normally for the analysis.

SCADA data filtering is performed using the FLOw Redirection and Induction in Steady State
(FLORIS)-based Analysis for SCADA data (FLASC) tool [20]. We filter out power outliers for
each turbine based on curtailment, mean-power-curve outliers, sensor-stuck faults, and non-
normal operations. On average for all turbines in the wind farm, 77.9% of the data remain valid
after discarding outliers. Furthermore, the yaw angle for each turbine is calibrated to true north
in FLASC using FLORIS with the Gaussian wake model.
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Figure 1. Relative location
of the Westermost Rough and
Humber Gateway wind farms.
Front-row turbines in West-
ermost Rough for southeast-
erly winds are shown with
crosses. The Southwest (SW)
and Northeast (NE) front-
row turbines (for southeast-
erly winds) of Westermost
Rough are shown for reference.
Relative distances are calcu-
lated from the center of the
Humber Gateway wind farm.

Figure 2. Domain layout for
the WRF simulations. The
solid and dotted white rectan-
gles represent the location and
size of the nested domain for
the ∆x = 1 km and ∆x =
0.5 km simulations, respec-
tively, within the parent do-
main (∆x = 3 km).

3. Numerical Models
We simulate atmospheric flow around these two wind farms in the North Sea using the Weather
Research and Forecasting (WRF) model (Version 4.4) using a two-domain, one-way nesting
setup (Figure 2). ERA5 reanalysis [21] provides initial and boundary conditions to the outer
(∆x = 3 km) mesoscale domain. For the nested mesoscale domain, we perform simulations using
two horizontal grid spacings, one with ∆x = 1 km (solid white line in Figure 2) and another
with ∆x = 0.5 km (dotted white line in Figure 2). The physical characteristics and modeling
options of the domains are provided in Table 1.

Two boundary-layer parameterizations are used to model turbulent mixing in the lowest
portion of the atmosphere. The one-dimensional 2.5-MYNN boundary-layer parameterization
(MYNN from hereafter) [18] is used with ∆x = 1 km, whereas a 3D boundary-layer
parameterization (3D PBL from hereafter) [13, 19] is employed with ∆x = 0.5 km. For
completeness, we also perform simulations using the 3D PBL for a nested domain with ∆x = 1
km. The MYNN parameterization estimates vertical turbulent mixing using the vertical
turbulent stress divergence, whereas horizontal mixing is computed with a Smagorinsky-like
approach. In contrast, the 3D PBL explicitly computes both the vertical and horizontal
turbulent flux divergence for momentum, heat, and moisture. Here, we use the “boundary-layer
approximation” to the 3D PBL, where vertical turbulent fluxes are calculated like in MYNN,
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Domain ∆x [km] ∆zs [m] (nx, ny, nz) α [-] PBL Model

d01 3.0 8 (241, 241, 79) - MYNN

d02
1.0 8 (265, 301, 79)

[0.0, 0.5, 1.0] MYNN
1.0 3D PBL

0.5 8 (265, 301, 79) 1.0 3D PBL

Table 1. Simulation setup, including horizontal grid resolution (∆x), vertical resolution at the
surface (∆zs), number of grid cells along each direction (ni), correction factor for the fraction
of turbine-added TKE (α), and boundary-layer parameterization for each domain.

and the horizontal turbulent fluxes are calculated analytically following [22], as in [23, 24]. We
found the full matrix solution to the turbulent fluxes to be numerically unstable in our test cases.
Model closure constants and the master length scale follow the original Mellor–Yamada model
[22]. Additional information on the “full” 3D PBL and its “boundary-layer approximation” can
be found in Juliano et al. [13].

We simulate the wind turbines exclusively in the nested domain (d02) using the Fitch WFP
[14, 25, 23]. The Fitch parameterization represents the effect of wind turbines through a
momentum sink and a source of turbulence kinetic energy (TKE). The drag from the turbines
on the flow is a function of the thrust coefficient, the number of turbines per grid cell, and the
turbine size (i.e., rotor diameter D). The Fitch wind farm parameterization postulates that a
fraction of the energy from the flow is converted into increased turbulent motions; thus, the
parameterization adds a source to the TKE tendency equation as well. Turbine-added TKE is
regulated in the model as CTKE = α(CT −CP ), where α is a correction factor, and CT and CP

are the turbine’s thrust and power coefficients, respectively, which in turn are a function of inflow
wind speed. We explore the sensitivity to the turbine-added TKE in the MYNN simulations
by varying α between 0 and 1. Because the average turbine spacing in Westermost Rough and
Humber Gateway is 945 m and 580 m, respectively, multiple wind turbines are expected to
occupy one grid cell for the ∆x = 1 km domain (Figure 3a). Furthermore, due to the domain
discretization and because the effect of the turbines is placed at the grid cell center, the effective
wind farm layout of Westermost Rough and Humber Gateway in our simulations (Figure 3) may
differ from their physical location (Figure 1). A more accurate representation of each farm’s
layout is obtained with finer resolution (Figure 3b).

4. Climatology of winds in the region
We characterize the climatology of winds in the region using nacelle-anemometer wind speed and
turbine yaw angle (corrected to true north) recorded in SCADA for the turbines in Westermost
Rough. Cluster wakes from Humber Gateway are expected to impact Westermost Rough for
wind directions between 130◦ and 170◦ [26], when both wind farms are partially or fully aligned.
Consequently, we focus on these wind sectors. Furthermore, we focus our analysis on winds
above cut-in speed and below rated speed (4 m s−1 and 13 m s−1, respectively, for the Siemens
6-MW turbine). Rather than replicating the observations on a case-by-case basis, which is
highly sensitive to accurately reproducing the temporal evolution of atmospheric conditions, we
use ERA5 reanalysis to find times when the statistics of wind speed and direction are comparable
to SCADA and simulate those cases in WRF.

To evaluate the capability of mesoscale models in representing cluster wakes, we perform
numerical simulations of 42 cases in 2017 that reproduce the statistics of wind speed and direction
near the Westermost Rough wind farm. For each case, the parent domain spins up for 14 hr
before initializing the nested domain. We discard the first 5 hr of simulation data for the
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nested domain. Three-dimensional wind speed and temperature fields, as well as turbine power
production, are output every 5 min for 10 hr after spinup of both domains is complete. Note that
winds in the mesoscale simulations are expected to be different from the ERA5 reanalysis. ERA5
data is obtained from the ECMWF’s Integrated Forecasting System, which employs a different
dynamical core, grid resolution, and parameterizations of physical processes from WRF. Thus,
even though WRF is forced using ERA5 data, it will reach its own resolved state away from the
domain boundaries.

We use the Perkins Skill Score (PSS) [27] to determine a continuous range of wind speeds
and directions where wind statistics in the observations and simulations are similar. The PSS
is defined as the cumulative minimum value of two distributions of a binned value, measuring
the common area between two probability distributions. Here, we compare the conditional
probability distributions for wind speed (Ui) and wind direction (ϕj) bins from observations
(Zo) and model results (Zm), as shown in Eq. 1. For the mesoscale simulations, we use wind
speed and direction for the grid points closest to the front-row turbines in Westermost Rough.

PSS =
∑
Ui

∑
ϕj

min{Zm(Ui, ϕj), Zo(Ui, ϕj)} (1)

The climatology of winds (i.e., wind speed and direction) near the Westermost Rough wind
farm is well represented in the WRF simulations for a range of wind speeds and directions.
We calculate the PSS score for different combinations of wind speed and wind direction bins,
then find the continuous range of wind speed and directions that maximize the correspondence
between the simulations and observations (i.e., PSS score). Note that variations in the cluster-
wake effect may influence the model’s ability to reproduce the climatology of this site. The
PSS score for the conditional probabilities from WRF and SCADA is 0.75 for wind speeds
between [6 m s−1, 9.5 m s−1] and wind directions between [130◦, 170◦], suggesting simulations
capture about 75% of the observed probability density functions. Kolmogorov-Smirnov and Chi-
Squared tests indicate the statistics of winds in the MYNN and 3D PBL simulations match the
statistics of the SCADA data at a 95% confidence level. Moreover, even though the ∆x = 0.5 km
domain is smaller than the ∆x = 1 km domain, resulting in different boundary conditions, the
statistics of wind speed and direction are still well captured. Approximately 1900 data points of
filtered data from SCADA (10-min averages) lay within these wind speed and direction ranges.
Similarly, more than 1300 data points from the WRF simulations (data every 5 min) satisfy

Figure 3. Simulated tur-
bine locations in the WRF
grid for the ∆x = 1 km (a)
and ∆x = 0.5 km (b) simu-
lations. Multiple turbines lo-
cated on the same grid cell
are represented by larger cir-
cles. The edge-most turbines
in the front row of Wester-
most Rough (for southeasterly
winds) are highlighted using
white circles.
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these wind conditions. Note that we use ERA5 reanalysis to find cases when winds at 100 m are
between 4 m s−1 and 13 m s−1. However, the mesoscale simulations only capture the statistics
accurately for wind speeds between 6 m s−1 and 9.5 m s−1. The remaining analysis is restricted
to winds with a speed between 6 m s−1 and 9.5 m s−1 and direction between 130◦ and 170◦ only.

5. Cluster-wake effects
5.1. Front-row turbines
We quantify cluster-wake effects from Humber Gateway on downstream wind turbines using
the average of the ratio of power production from the edge-most, front-row turbines in the
Westermost Rough wind farm (turbines SW and NE in Figure 1). This power-ratio metric is
accurate for quantifying partially waked conditions for Westermost Rough [26]. The southwest
turbine in the front row of Westermost Rough (PSW ) is expected to generate more power than
the northeast turbine in the front row (PNE) for wind directions around 145◦, and vice versa
for wind directions around 165◦ [26].

Mesoscale simulations accurately represent cluster-wake effects on front-row turbines in the
Westermost Rough wind farm (Figure 4). In general, all mesoscale simulations display the
same trend in the power ratio when compared to SCADA data. The southwest turbine (SW)
in Westermost Rough is waked by Humber Gateway for wind direction sectors between 130◦

and 155◦, whereas the northeast turbine (NE) is waked by Humber Gateway for wind direction
sectors between 155◦ and 170◦.

The MYNN (α = 1) and 3D PBL (∆x = 1 km) model configurations show the best agreement
with the observational data (Figure 4). The power ratio obtained from SCADA is statistically
different (95% confidence) from the power ratio predicted using MYNN (α = 1) only when
the winds have a strong easterly component (ϕ ∈ [130◦, 134◦]). Similarly, SCADA data are only
statistically different from the 3D PBL simulations (∆x = 1 km) for wind sectors ϕ ∈ [130◦, 134◦]
and ϕ = 161◦ ± 1◦. Surprisingly, an increased grid resolution while using the 3D PBL (i.e.,
∆x = 0.5 km) negatively impacts the ability of the mesoscale model to represent cluster-wake
effects on front-row turbines, displaying the least skill in reproducing observations. It is likely
that the horizontal gradients of the mean velocities become increasingly important for the wake
evolution with the finer grid spacing. Thus, the “full” 3D PBL model instead of its “boundary-
layer approximation” may be better suited for modeling the wake evolution downstream of a wind
farm using the smaller grid spacing. Despite some studies suggesting turbine-added TKE may
affect wind farm wake evolution [25, 23, 8], our data show that power losses due to cluster-wake
effects are minimally impacted by α, similar to previous results [28]. Nonetheless, neglecting
the turbine-added TKE (i.e., α = 0) yields the largest differences between the mesoscale model
predictions with MYNN and the SCADA data.

Mesoscale simulations can represent differences in cluster-wake effects caused by different
atmospheric stability regimes (Figure 5). For the SCADA data, we quantify stability using
the bulk Richardson number between the surface and 150 m derived from ERA5 reanalysis.
For WRF, stable conditions are defined using the surface heat flux. For the wind conditions
described in Section 4, about 60% (67%) of the cases in WRF (SCADA) are stable and 40%
(32%) are unstable. All simulations display increased power losses during stable conditions
compared to unstable conditions, just like the SCADA data. The 3D PBL (∆x = 1 km)
better captures cluster-wake effects on front-row turbines for stable and unstable conditions
than the other model configurations. Conversely, the 3D PBL (∆x = 0.5 km) evidences the
least agreement with SCADA data for both stable and unstable conditions. Mean cluster-wake
effects are similar between the stable and unstable simulations for winds with a strong southerly
component (ϕ ∼ 165◦). Winds from the south have a long fetch over land, where atmospheric
stability can be different (and in many cases opposite) from offshore, and so an internal boundary
layer develops with stably stratified winds aloft a weakly unstable surface layer that can persist
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Figure 4. Ratio of power
production between the south-
west (SW) and northeast
(NE) front-row turbines (as
shown in Figure 1) of West-
ermost Rough for simulations
and observations. Data are
shown for wind speeds be-
tween [6 m s−1, 9.5 m s−1]
and wind directions between
[130◦, 170◦] in 2◦ bins. The
shaded area/error bars repre-
sent the 95% confidence inter-
val obtained from a bootstrap-
ping method.

Figure 5. Same as Figure 4 but for stable (left) and unstable (right) atmospheric stability
conditions.

for long distances and affect cluster-wake evolution.

5.2. Wind farm
Even though mesoscale simulations accurately represent cluster-wake effects on front-row
turbines (Section 5.1), they do not necessarily capture the effect on the entire downstream wind
farm. We quantify the model’s accuracy in representing the effect from internal and external
wakes using the error metric E defined in Eq. 2, where P̂o and P̂m are the average normalized
power production of each turbine from SCADA and WRF, respectively, for the wind speed
Ui and direction ϕj sectors. The normalized power production of each turbine in Westermost

Rough for a combination of wind speed and direction (Ui, ϕj) is estimated as P̂ = P/PFR, where
PFR is the average power production of the front-row turbines. E provides a measure of the
mismatch between WRF and SCADA for a set of inflow wind conditions. Based on Eq. 2, WRF
overestimates wake effects when E > 0, and underestimates wake effects when E < 0. Figure
6 illustrates the mismatch between WRF and SCADA for two sets of wind directions: when
the wind turbine columns are aligned with the incoming flow (Figure 6a-c), and when they are
staggered (Figure 6d-f). Note that we do not include results from MYNN for α = 0, 0.5 in
Figure 6 because they are nearly identical to the results from MYNN with α = 1.
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Figure 6. Normalized difference between measured and simulated power production for
each wind turbine in Westermost Rough. Data are shown for wind speeds between
[6 m s−1, 9.5 m s−1]. The top panels (a-c) correspond to wind directions within [140◦, 150◦], and
the bottom panels (d-f) to wind directions within [160◦, 170◦]. Panels (a,d) show the difference
between SCADA and WRF with MYNN (α = 1), panels (b,e) the difference between SCADA
and WRF with the 3D PBL (∆x = 1km), and panels (c,f) the difference between SCADA and
WRF with the 3D PBL (∆x = 0.5 km). The arrows in the bottom right of each panel illustrate
the range of wind directions considered.

E(Ui, ϕj) =
P̂o(Ui, ϕj)− P̂m(Ui, ϕj)

P̂o(Ui, ϕj)
(2)

Mesoscale simulations underestimate (overestimate) internal-wake effects when the wind
direction results in an aligned (staggered) array layout within Westermost Rough (Figure 6).
All model configurations display the same trend when compared to the observations. Power
production from WRF is generally larger than SCADA for aligned conditions (Figure 6a-c),
and consistently larger for the second turbine row in Westermost Rough, suggesting WRF
predicts smaller velocity deficits than the observations. Conversely, the simulations predict
larger internal-wake velocity deficits when the wind direction results in a staggered layout, as
depicted by reduced power production compared to SCADA (Figure 6d-f). Differences between
SCADA and WRF are minimal for front-row turbines, as shown in Section 5.1, suggesting cluster
wakes from Humber Gateway are accurately represented in the simulations.

Internal-wake effects are not accurately captured in the mesoscale simulations because the
velocity deficits are distributed over a grid cell that is much larger than the individual wakes. As
a result, the velocity deficit is reduced for aligned conditions (ϕ ≈ 146◦), minimizing internal-
wake effects on downstream turbines. For the same reasons, power reductions from internal
wakes are overestimated in a staggered layout (ϕ ≈ 165◦) because individual turbine wakes
affect a wider downstream area. Furthermore, turbines may occupy adjacent grid cells in the
staggered layout; thus, individual-turbine wakes can propagate to a nearby turbine even if it is
not immediately downstream. Given that internal-wake effects are not accurately captured in
mesoscale simulations, it can be argued that total wake-related power losses that includes both
internal- and cluster-wake effects can be misrepresented.
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6. Summary and Conclusions
Wakes from offshore wind turbine clusters can propagate long distances, reducing the power
production of downstream wind farms. Power losses from cluster wakes have historically been
underestimated, leading to uncertainty in energy yield estimates. Mesoscale numerical weather
prediction models can be used to estimate losses from cluster wakes and reduce uncertainty in
wind farms’ energy production assessments. However, there is still uncertainty regarding the
accuracy and calibration parameters of the wind turbine parameterizations within them. Here,
we investigate the ability of the mesoscale Fitch wind turbine parameterization to represent
offshore cluster wakes using two boundary-layer parameterizations. We perform high-resolution
mesoscale simulations of two offshore wind farms in the North Sea using the Weather Research
and Forecasting model. Wind turbine operational data from the downstream wind farm are
used to investigate the ability of the mesoscale model to capture internal- and external-wake
effects.

Mesoscale models accurately represent cluster-wake effects on the front-row turbines of the
downstream wind farm, but fail to capture the internal-wake effects. The one-dimensional
and three-dimensional boundary-layer parameterizations yield accurate estimates for cluster-
wake-induced power losses on the front-row turbines of a waked offshore wind farm (Figure 4).
Inherently, stable atmospheric conditions exhibit increased power losses compared to unstable
atmospheric stability regimes (Figure 5), a feature that is well-captured by the mesoscale
simulations. However, mesoscale models fail to capture the cumulative power reductions for
an entire wind farm when it is being waked by an upstream turbine cluster because internal
wakes are not well represented. Due to the numerical grid resolution used in the mesoscale
simulations, power losses due to internal wakes are overestimated (underestimated) when the
wind is staggered (aligned) with the turbine columns of the wind farm (Figure 6). It is likely that
an even finer grid spacing is required to accurately represent internal-wake effects in mesoscale
simulations. However, the horizontal gradients in the wake of the wind farm may become non-
negligible with the smaller grid spacing, highlighting the importance of further development
of the “full” 3D PBL for high-resolution mesoscale modeling of wind farms. Future studies
could use a hybrid approach and combine engineering models or large-eddy simulations with
mesoscale models to evaluate internal-wake effects on power production of the offshore wind
farm. Mesoscale models may also be used to estimate cluster-wake effects when observations are
not available or for planning purposes. To this end, mesoscale model results may be employed
to tune engineering wake models for farm-to-farm wakes for a variety of wind speeds, wind
directions, and atmospheric stability conditions that represent the climatology of a given site,
which is cost-prohibitive if only using large-eddy simulations.
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Estimating Long-Range External Wake Losses

ABSTRACT

ArcVera Renewables carried out a study of long-range (> 50 rotor diameters) external wakes,
with emphasis on the tendency of existing engineering wake models to greatly underpredict the
strength and longevity of external wind farm wake losses on other projects under some
atmospheric conditions. Three wind farm case studies are presented; two onshore in the
central United States, and one offshore in the New York Bight lease areas recently auctioned for
wind energy development. The first case study demonstrates the inadequacy of standard
engineering wake models to capture the magnitude of long-range external wake losses. With
that result as motivation, the second case study was used to demonstrate the utility of the WRF
mesoscale model with the Wind Farm Parameterization (WFP) to model the wake impacts of
distant external turbines more accurately than existing engineering wake models. WRF-WFP
produced average external wake losses much closer to, 16% higher than, that derived from
SCADA data. In contrast, two engineering wake loss models failed to come close to the actual
wake loss deficit; these models under-predicted external wake losses as a small fraction, ⅓ or
less, of that derived from SCADA data.

As a further demonstration of the capabilities of WRF-WFP, and to give a view into the potential
for large project-to-project wake impacts in the recently auctioned New York Bight offshore
lease areas, ArcVera presented a third offshore wind energy case study. ArcVera Renewables
designed WRF-WFP simulations of hypothetical wind project turbine arrays that might be built
in those areas approximately 5-10 years from today. The simulations were run for a set of 16
days, with winds from the prevailing southwesterly wind direction, selected to maximize the
waking of arrays aligned in a southwest to northeast direction. The simulations produced
dramatic hub-height project-scale wake swaths that extended over 50 km downwind, with a
specific example showing a waked wind speed deficit of 7% extending 100 km downwind from
the array of turbines that produced it. When averaged over the selected 16 simulation days,
the energy loss at the target lease area due to external wakes from arrays to its southwest was
28.9%. While the 16-day result undoubtedly greatly exceeds the long-term external wake loss
for winds from all directions, it is nonetheless illustrative of the potential for much greater
external wake losses than have been accounted for in development planning for the New York
Bight lease areas; and, as in the two onshore long-distance wake loss case studies, are much
larger than engineering wake models predict for the same conditions.

The implications of this study of long-range wakes on the assessment of energy
production (or shortfalls thereof) of existing and anticipated future wind farms is material
and significant, as unexpectedly large impacts may well be present, and existing
non-WRF-WFP-based engineering long-range wake loss methods are shown to be
inadequate. The inadequacy of these models for long-distance wakes may be remedied in
the future with further validation time-series modeling and concomitantly accurate
assessment of time periods when atmospheric stability is high. Still larger implications are
clear for long-term project valuation risk, the analysis and assessment of hybrid projects,
battery usage risk, and around-the-clock reliable renewable energy power production.
O�shore wind farms are equally strongly a�ected, and the extensive global plans for
proximal deployment of o�shore wind projects should account for such impacts.
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1 INTRODUCTION

When wind energy resource assessments are conducted for planned wind energy projects, one
of the most significant and uncertain contributors to that estimate is the energy loss due to
wind turbine wakes. Typically, the wake losses are calculated separately for those coming from
wakes generated within the project (internal wakes) and those generated by turbines outside
the project (external wakes). Until recently the same models have been used for both. These
models often predict negligible waked wind speed deficits just a few tens of rotor diameters
downwind of the waking turbines. Aggregate effects of wakes from a large array of turbines
acting in concert can extend this farm-scale wake effect, but, the general sense in the industry
was that wakes from external turbines more than roughly 50D (“D” refers to the rotor diameter
of the wake-generating turbine) from the project of interest could be ignored. In Brazil, for
example, local renewable energy regulations require compensation for lost energy from new
wind farms installed within 20 wind turbine tip-heights (~24D).

Historical work in the 1980’s (Nierenberg, 1989, Nierenberg and Kline, 1989) documented
significant wake effects 250D downwind in California’s passes. More recently, observational
evidence gathered over the last decade has begun to change this view. For onshore wakes, the
“far wake” region was thought to extend no more than about 15D downwind (McCay et al.
2012). Scanning Doppler radar revealed wakes from single turbines extending at least 30D
(Hirth et al. 2012). The offshore environment has always been understood to be more
conducive than onshore to wake longevity, because turbines tend to be larger (producing larger
wakes), atmospheric conditions tend to be more stable (which slows wake recovery), and the
wind flow is less disturbed by underlying surface irregularities. Offshore wakes were thought to
extend perhaps as far as 15 km (McCay et al. 2012), corresponding to approximately 125D.
However, recent evidence from satellite-based synthetic aperture radar (SAR) measurements
over the North Sea (Hasagar et al. 2015; Djath et al. 2018); as well as aircraft measurements in
the same region (Platis et al. 2018) have shown wind farm-scale wakes with wind speed deficits
of 5-10% extending 50 km or more (> 400D).

This white paper brings to light the significant impacts on energy production due to long-range
wakes. We present evidence from two pairs of wind farms in the central United States, in which
SCADA data from a downwind “target” wind farm is analyzed before and after a new upwind
project was built. We also show the insufficiency of existing wake models to capture the energy
losses caused by the distant upwind farm. We describe the accuracy potential of the Wind farm
Parameterization (WFP), designed and implemented in the Weather Research and Forecast
(WRF) model by Fitch et al. (2012), as a commercially viable tool for estimating the impacts of
long-range external wakes and external wake production risk. For the second pair of onshore
projects, we demonstrate that WRF-WFP predicts external wake losses much closer to the
SCADA-derived values than the conventional engineering models.

Finally, as in recent studies focused on the lease areas offshore of Massachusetts (Rosencrans et
al. 2022; Pryor et al. 2022), we apply the WRF-WFP to hypothetical future wind development in
the New York Bight Lease Areas recently auctioned in February 2022, to demonstrate the

6

ArcVera Renewables 1301 Arapahoe Street, Suite 105  |  Golden, CO 80401 USA  |  +1 720.237.2929



Estimating Long-Range External Wake Losses

potential for strong, long-range wakes from these lease areas to negatively affect energy
production at neighboring wind farms, even those many tens of kilometers away. These
hypothetical simulations use the largest reference turbine defined in the IEA Wind reference
turbine family, assuming that turbines of this capacity (or larger) will eventually be installed
when construction begins in 5-10 years. The results are material to heretofore seldom
considered wind energy resource assessment production long-range wake loss risk; in terms of
distance downwind (50-100 km) wakes with speed deficits greater than 1 m/s persist and
directly impact other lease areas. These predictions are preliminary, considering there is no
operational history for these very large turbines with which to validate the long-range wakes
they produce within the WRF-WFP. However, confidence in the WRF-WFP has been
accumulating based on validation studies already conducted by the research community (see
below) and the onshore results presented in the first part of this report. ArcVera already
commercially utilizes this tool to assess and reduce risk, and anticipates that tools like the WFP,
or other wind farm-aware mesoscale model applications, will become a key part of the wind
energy resource assessment (WERA) wind farm-atmosphere interaction (WFAI)/wake loss
modeling toolbox.

2 CASE STUDY 1: THE PROBLEM

The challenge of correctly estimating long-range wake impacts can be illustrated with Case
Study 1, depicted schematically in Figure 1. Case Study 1 involves a smaller, new project being
built 13 km north of an existing larger project in the central United States. Details of the turbine
layouts, project capacities, and turbine models are withheld to maintain the projects'
anonymity. The existing project is the “target project” at which the impact of external wakes
from the new project is evaluated. Four years of SCADA data were available at the target
project, with the first two years occurring before the COD of the new project, and the second
two years after. While southerlies are the prevailing wind direction, northerlies occupy a
secondary frequency peak (see wind rose in Figure 1) and would lead to a project-scale wake
impinging upon the target project a substantial portion of the time.

An operational assessment was performed for the target project, using SCADA data from the
two separate periods, to determine the long-term energy yield based on the performance of
the target project during each period. Reasonable corrections for curtailment, availability, and
windiness were made during the period assessed, relative to the long-term, to assure
comparability of different periods of record. No other project development occurred within the
vicinity during the 4-year study period.

In addition to the operational assessment, wake model experiments were run in which the
same project wind climate was applied, but in one experiment, the new project was included,
and in the other, it was excluded, and the difference in energy yield at the target project
evaluated. This experiment was repeated with two wake models: The Eddy Viscosity /
Deep-Array Wake Model (EV-DAWM) available in OpenWind, and the ArcVera Wind
Farm-Atmosphere Interaction (WFAI) Model (Poulos et al. 2022). The WFAI model is an
empirical loss model built upon and validated against numerous data sets of energy production
and measured wind speeds before and after wind farm installations. It was originally developed

7

ArcVera Renewables 1301 Arapahoe Street, Suite 105  |  Golden, CO 80401 USA  |  +1 720.237.2929



Estimating Long-Range External Wake Losses

under the auspices of U.S. Department of Energy scientific research (DOE 1987, 1990),
continually upgraded, and commercially used on numerous WERAs at ArcVera for many years.

Figure 1. Schematic of the two projects studied in Case Study 1.  Ellipses indicate outlines and relative
locations of projects.  The wind rose is derived from a hub-height met tower within the target project.

Table 1 provides the results of the before and after SCADA-based operational assessment, and
the wake model predictions. While the SCADA analysis indicated that the presence of the new
wind farm reduced production at the target wind farm by 3.6%, both the wake models indicated
a nearly negligible impact of the new wind farm. The wake models were unable to predict even
a small fraction of the observed wake loss from an external wind farm 13 km away.

Table 1. SCADA-derived and modeled long-range annual-average external wake losses at Target Project
for Case Study 1.  Losses are expressed as the percent of gross energy.

Source of Estimate
Long-Range

External Wake Loss
SCADA 3.6%

EV-DAWM 0.1%
WFAI Model < 0.1%

While these engineering wake loss models have been well validated against internal wake and
WFAI losses of wind farms based on production data, they have been less well, or unvalidated,
at long-range. This long-range wake loss weakness is exposed in this case study.

3 A POTENTIAL SOLUTION: MESOSCALE MODELING WITH A WIND FARM PARAMETERIZATION

The Weather Research and Forecasting model (WRF, Skamarock et al. 2019) is a numerical
weather prediction model that has been in use globally by academic and national research
institutions, national weather prediction agencies, and private companies with weather and
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climate concerns since it was first developed and released in 2000. It is classified as a
“mesoscale model,” which means it is designed to simulate weather phenomena covering
spatial scales from 2 km to 2000 km (numerically resolved with grid spacing of 200 m to 200 km
Chapter 10, Pielke, 1984), but has been used successfully at both larger scales and smaller
scales, in the latter case as a “large eddy simulation” or LES model, with a grid spacing of 10 m
or less). It is used routinely in the wind energy industry for short-term energy forecasting and
retrospective energy assessment. ArcVera Renewables has over 45 years combined experience
using WRF and similar mesoscale models for various applications, including using WRF and
WRF-LES in wind energy forecasting and assessment for over a decade.

In 2012, in response to the increasing interest in wind energy development and the potential
physical interactions between wind farms and the weather and climate of the surrounding
region, Fitch et al. (2012) developed and implemented in WRF a capability referred to as the
Wind Farm Parameterization (WFP), which models the deceleration of winds by turbines within
a WRF model grid box, based on the turbine thrust characteristics. The kinetic energy removed
by the turbines is distributed between electric power generation and turbulence production.
The wind deceleration interacts with the full atmospheric dynamics simulated by WRF, allowing
for downwind transport of the waked wind speed deficits, and feedbacks to the flow such as
upwind blockage from the simulated combined induction zone effects of wind turbines, flow
deflection around wind farms, gravity wave development and impacts on wind flow patterns,,
and the complex movement and distortion of wake swaths within time-dependent curved or
sheared wind flows. Importantly, the roles of time-varying atmospheric stability, particularly
stable atmospheric conditions, and turbulence on wake recovery are realistically represented in
meteorological physics within WRF with WFP.

The waked wind speed deficits simulated by WRF-WFP have been validated in several research
studies, mostly at North Sea offshore wind projects, including Fitch et al. (2012), Hasagar et al.
(2015), Platis et al. (2018), and Siedersleben et al. (2018). In addition, many studies have
conducted sensitivity and other tests with WFP, leading to improvements and recommendations
for best use (Lee and Lundquist 2017; Archer et al. 2020; Siedersleben et al. 2020; Tomaszewski
and Lundquist 2020; and Larsén and Fischereit 2020). Based on these studies, the WFP has
been modified and improved and continues to be actively developed in the research
community. Therefore, the WFP should be considered a well-validated tool that continues to
improve as part of ongoing active research and development. ArcVera’s work and the research
cited above provides ample validating evidence that WRF-WFP captures the fundamental
physics of wind turbine interactions with the atmosphere.

4 CASE STUDY 2: A DEMONSTRATION OF WRF-WFP

Case Study 2 is similar to Case Study 1, in that it involves an existing project, and a new project
built to its north (Figure 2). Two key differences from Case Study 1 are that the new project is
much larger than the target project; and that the new project is closer to the target project
(only 5 km away, as opposed to 13 km in Case Study 1). The wind rose in Figure 2 indicates that
a project-scale wake from the new project would impinge on the target project a substantial
portion of the time. In Case Study 2, rather than performing a long-term-adjusted operational
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assessment for the before and after periods, we evaluated 10-minute SCADA energy production
data from the Target Project and ran model simulations only during a selection of days in which
maximum waking of the target project by the new project was expected. Maximum waking was
expected in northerly flow conditions, with wind speeds in the steep, non-linear section of the
target project’s power curve. Care was taken to select a set of times in which the wind speed
distributions in the before and after period matched, so as not to skew the result due to
different wind climates. A total of 1300 hours (~54 days) of SCADA production and simulated
winds were used.

Figure 2. Schematic of the two projects studied in Case Study 2. Ellipses indicate approximate outlines and
relative locations of projects.  The wind rose is derived from an ERA5 Reanalysis node within the target project.

For Case Study 2, wake model simulations were also performed for the “before” and “after”
periods (i.e., with and without wakes from the New Project), using both EV-DAWM and ArcVera
WFAI. In addition, WRF-WFP was run for the same selected set of times, with three simulations
performed for each of the selected dates, one with no turbines, one with only the target project
turbines, and one with new project and target project turbines. We used WRF version 4.2.1,
which includes a key code correction for the WFP identified by Archer et al. (2020).

The study used WRF model grid with 1.0-km spacing and obtained initial and boundary
conditions from the ERA5 Reanalysis data set (Hersbach et al. 2020). Waked wind speed deficits
due to the new project were evaluated from the difference between the “new and target
turbines” run and the “only target turbines” run. For illustration, an example of waked wind
speed deficit simulated by WRF-WFP at one time is shown in Figure 3. It depicts all wakes from
both projects by showing the difference between the “new and target turbines” run and the “no
turbines” run during a time of north-northeasterly wind flow. Note that the project-scale wake
swath from the new project not only envelopes the smaller target project but continues with

10

ArcVera Renewables 1301 Arapahoe Street, Suite 105  |  Golden, CO 80401 USA  |  +1 720.237.2929



Estimating Long-Range External Wake Losses

substantial magnitude (at least 1 m/s) to the domain boundary over 30 km south-southwest of
the new project.

Figure 3. Waked wind speed deficit at hub height from the WRF-WFP, in m/s (color scale at bottom), at 10 pm
local time on a mid-summer day at the projects in Case Study 2. Ellipses indicate approximate outlines and
relative locations of projects.  Hub height wind speed at this time was 9.5 m/s.

The average wake loss during the selected periods is shown in Table 2. Because the times were
selected to maximize the wake impacts of the new project on the target project, the loss
numbers are much higher than the long-term mean values shown for Case Study 1.
Additionally, the time points were segregated into unstable and stable categories based on
negative or positive values of the bulk Richardson number. The SCADA analysis indicates a large
external wake impact of 23.8% by the new project on the target project, averaged over the
selected time points. As expected, the SCADA analysis also shows wake impacts to be stronger
during stable periods than during unstable periods. The WRF-WFP model overpredicts the
external wake loss during the selected time points, but only by a factor of 1.16 (16%
overprediction). It also correctly identifies the stronger wake impact during stable conditions.
Meanwhile, as in Case Study 1, the engineering wake loss models underpredict the effect by a
large amount; they predict only a small fraction of the SCADA-derived wake loss in energy.
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Table 2. SCADA-derived and modeled long-range external wake losses at Target Project for Case 2 for the
selected 1300 hours of northerly wind direction, with separate results by stability class. Losses are expressed as
the percent of gross energy. Percent frequency of occurrence of stable and unstable conditions are shown in
column headings.

Source of Estimate

Long-Range External Wake Loss

All Times

Stable
Conditions

(67.5%)

Unstable
Conditions

(32.5%)
SCADA 23.8% 29.1% 12.8%
EV-DAWM 5.7% not tested not tested
ArcVera WFAI Model 0.2% not tested not tested
WRF-WFP 27.7% 32.6% 17.5%

5 CASE STUDY 3: EXTERNAL WAKES FROM HYPOTHETICAL WIND FARMS IN THE NEW YORK BIGHT
LEASE AREAS

5.1 CONFIGURATION

As a further demonstration of the capabilities of WRF-WFP, and to give a view into the potential
for large project-to-project wake impacts in the recently auctioned New York Bight offshore
lease areas, ArcVera Renewables ran WRF-WFP simulations of hypothetical wind projects that
might be built in those areas perhaps 5-10 years from today. The hypothetical arrays, depicted
in Figure 4, were designed as follows. The turbine is the IEA Wind 15-MW Reference Turbine,
with a hub height of 150 m and a rotor diameter of 240 m. Turbines of this size and capacity are
now starting to be commercially marketed. In 5-10 years, offshore wind energy projects may
utilize turbines of this size or larger. We designed the arrays with a turbine spacing of 1.0
nautical miles (1.85 km) in the east-west direction, and 0.75 nautical miles (1.39 km) in the
north-south direction, based on our current understanding of what the relevant jurisdictional
agencies will require and the measured wind rose. 10 km (42D) gaps were enforced between
turbine arrays; there are 3 km gaps between lease areas. Prevailing winds are southwesterly.

Three arrays were designed:

● Northern Array
o Lease Area 0538
o 85 turbines
o Treated as the target project

● Central Array
o Lease Area 0539
o 118 turbines
o Treated as an external project

● Southern Array
o Lease Areas 0541 and 0542
o 157 turbines
o Treated as an external project
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The WRF model was configured similarly to Case Study 2, except with slightly finer horizontal
grid resolution (800 m). 16 case study dates were selectively chosen to provide maximum time
with winds from the 190°-240° sector and speed in the range of 6-11 m/s. Under these
conditions, the waking of the target array (0538) by areas 0539, 0541, and 0542 is maximum,
not only because they are directionally aligned with the wind, but because in southwesterly
flow (the prevailing direction, especially in the warm season), typically there is warm air moving
over colder water, resulting in stabilization of the flow and longer-lived wakes. The wind speed
range, positioned in the steepest part of the turbine power curve, was chosen to maximize the
energy sensitivity to the waked wind speed deficits. The annual wind rose at floating lidar E06
(Figure 4, right side) indicates that the conditions described above frequently occur, though the
chosen set of times have much higher wake losses than a long-term mean that accounts for the
entire wind rose. For each simulation day, the model was run for 24 h starting at 7:00 AM EST,
with a 6-h spin-up period from 1:00 AM to 7:00 AM EST. Model output was produced every 10
minutes.

For each chosen day, three simulations were run, which included the effects of:

1. No turbines (Simulation 1)
2. Turbines at the Southern (0541/0542) Array only (Simulation 2)
3. Turbines at both the Central (0539) and Southern Arrays (Simulation 3)

Figure 4. Map of New York Bight offshore lease areas (orange outlines). New Jersey lease areas are also shown
(blue outlines). Orange dots indicate hypothetical turbine arrays in lease areas 0538, 0539, 0541, and 0542.
Green triangles indicate floating lidar sites E05 and E06. The wind rose in the right panel is from lidar
measurements at site E06.

Wind speed deficits on the Northern Array (Lease Area 0538) due to external wakes from the
Southern Array only were evaluated from Simulation 2 minus Simulation 1. Wind speed deficits
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due to external wakes from the Central and Southern Arrays only were evaluated from
Simulation 3 minus Simulation 1.

5.2 RESULTS

An example of waked wind speed deficit from the WRF-WFP simulations is shown in Figure 5.
The left panel shows the effect of turbines in only the Southern Array, whereas the right panel
shows the effect of turbines in both the Southern and Central Arrays. The dominant feature of
these plots is the long-range project-scale wake swath extending from the arrays to the
north-northeast. Even at the northern edge of the domain, over 100 km downwind of the
Southern Array, the long-range wake from the Southern Array only (left panel) maintains a 0.7
m/s (or 7%) hub-height wind speed deficit; and 80 km downwind of the Central Array, the
long-range wake from the Southern and Central Arrays combined (right panel) maintains a 1.0
m/s (or 10%) wind speed deficit. The waked speed deficits within the target (0538, Northern)
array are 1.6 m/s (16%) from the Southern Array only, and 2.5 m/s (25%) from the combination
of the Southern and Central Arrays. Note that no turbines from the Northern Array were
included in the simulations, so the entire speed deficit within the Northern array is due to
external wakes from the Southern and Central Arrays.

Figure 5. Waked wind speed deficit at hub height (m/s, color scale at bottom), from the WRF-WFP simulations of
the New York Bight lease areas, at 1530 EST, 24 Feb 2020.  “x” symbols indicate the locations of floating lidars.

In addition to the project-scale wake, other prominent WFAI features emerge in these plots. A
region of speed deficit upwind of the projects indicates project-scale blockage, up to 0.5 m/s in
some locations, with wave-like structures embedded in it. Downwind, the wake swath is
flanked by areas of significant speed enhancement (> 0.5 m/s), which are a subject of future
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scientific study. Over the long term, when these flanking wind acceleration zones pass over
downwind projects, the accelerations partially offset the wake losses incurred at other times,
reducing the long-term mean external wake loss.

Energy-based losses at the Northern Array due to external wakes at the Central and Southern
Arrays for the 16 days of the simulation were calculated, along with corresponding predictions
from the EV-DAWM and ArcVera WFAI models. Results are shown in Table 3. No validation of
the results is possible due to the hypothetical nature of the turbine arrays. However, the results
illustrate the potential for large external wake losses. Even if the long-term mean external wake
loss at the Northern Array is, for example, one-quarter of the loss from this set of 16-days with
enhanced waking conditions, that still represents a very large loss due only to external wakes.
But equally important is the result, consistent with those of the first two case studies, that the
engineering wake models estimate only a small fraction of the external wake loss predicted by
the WRF-WFP.

Table 3. Modeled long-range external wake losses at New York Bight Lease Area 0538 for the 16 selected days of
primarily southwest wind direction, with separate results for wakes from Lease Area 0539 only, and from the
combination of Lease Areas 0539, 0541, and 0542.  Losses are expressed as the percent of gross energy.

Source of Estimate
Long-Range External Wake Loss at Area 0538
From 0539 only From 0539, 0541, & 0542

EV-DAWM 0.5% 5.3%
ArcVera WFAI Model < 0.1% 0.2%
WRF-WFP 13.0% 28.9%

5.3 SENSITIVITY TESTS

Considering the large magnitude and length of wakes predicted by WRF-WFP in the New York
Bight lease areas, and lack of validating data for the large hypothetical wind turbines used in the
simulations, ArcVera consulted with Professor Julie Lundquist’s research group at the University
of Colorado to consider the uncertainty in these model predictions of large, long-range wakes.
A suggestion that emerged was to test the sensitivity of the wakes to two configurable
parameters that recent studies have demonstrated are important for the magnitude of wakes
predicted by WRF-WFP: the number of vertical levels beneath the rotor layer, and the amount
of turbine-produced turbulence that is injected into the model simulation.

Tomaszewski and Lundquist (2020) found that using more vertical levels reduces mixing and
increases wake longevity (though they found the sensitivity modest). We used only 2 vertical
levels beneath the rotor, so we tested increasing that to 4 levels.

The turbulent kinetic energy (TKE) factor (a tunable parameter) scales the amount of
turbine-induced turbulence injected into the model flow. A value of 0.0 injects no
turbine-induced turbulence, whereas a value of 1.0 injects the full amount consistent with the
turbine power and thrust curves. The appropriate amount is not a settled matter, with the
original Fitch (2012) paper injecting the full amount (but testing sensitivity to half or double the
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full amount). Archer et al. (2020) recommended only one-quarter of the full amount be injected
to best match large-eddy simulations that they conducted, and Larsén and Fischereit (2021)
found that a value of 1.0 validated better than 0.25. Others have argued that none of the
turbine-induced turbulence should be injected into the model flow at the scales resolved by the
model (Jacobson and Archer 2012; Volker et al. 2015). In our simulations for both Case Studies 2
and 3, we used a TKE factor of 0.0, so we tested higher values, up to 1.0.

Table 4 shows the parameter values tested in the sensitivity experiments, and the resulting
relative change in wake strength compared to the control experiment (green highlight, 0.0%),
which used the configuration indicated in the upper left cell of the table (zero turbulence
injected, and two model vertical levels below the rotor layer). The wake strength was defined
as the area-integrated wind speed difference within the wind speed deficit swath north and
east of lease area 0539 . This definition yields a higher value if either the wake's magnitude or
areal size increases.

Table 4. Sensitivity test results. The control configuration (green highlight) is the upper left cell in the table, with
2 model levels beneath the rotor layer, and a TKE factor of 0.0%. The value in each cell represents the change in
wake strength relative to that of the control configuration. All values are positive, meaning that all sensitivity
tests produced stronger wakes than in the control configuration.

Turbine TKE Injection Factor
0.00 0.25 0.50 1.00

Number of
model levels
beneath rotor

2 0.0% not tested not tested 8.0%

4 0.7% 6.6% 7.7% 8.4%

The increase in vertical levels beneath the rotor slightly increased the wake strength, consistent
with Tomaszewski and Lundquist (2020). The increase in turbulence also increased the wake
strength. The latter result is counterintuitive considering that greater turbulence would be
expected to enhance wake recovery, and this does occur within the waking turbine array, but
downwind of it the opposite occurs: the wake is enhanced. Fitch et al. (2012) and Rybchuk et
al. (2021) found the same counterintuitive result. In summary, the original configuration
actually produced the weakest wakes of all the configurations tested. A TKE injection factor of
0.0 was found to produce rather accurate results in Case Study 2, and an increase in TKE
injection factor could reduce accuracy based on these sensitivity tests.

6 CONCLUSIONS

ArcVera Renewables carried out a study of long-range (> 50 rotor diameters) external wakes,
with emphasis on the tendency of existing engineering wake models to greatly underpredict the
strength and longevity of external wind farm wake losses on other projects under some
atmospheric conditions. Three wind farm case studies are presented; two onshore in the
central United States, and one offshore in the New York Bight lease areas recently auctioned for
wind energy development. The first case study demonstrates the inadequacy of standard
engineering wake models to capture the magnitude of long-range external wake losses. With
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that result as motivation, the second case study was used to demonstrate the utility of the WRF
mesoscale model with the Wind Farm Parameterization (WFP) to model the wake impacts of
distant external turbines more accurately than existing engineering wake models. WRF-WFP
produced average external wake losses much closer to, 16% higher than, that derived from
SCADA data. In contrast, two engineering wake loss models failed to come close to the actual
wake loss deficit; these models under-predicted external wake losses as a small fraction, ⅓ or
less, of that derived from SCADA data.

As a further demonstration of the capabilities of WRF-WFP, and to give a view into the potential
for large project-to-project wake impacts in the recently auctioned New York Bight offshore
lease areas, ArcVera presented a third offshore wind energy case study. ArcVera Renewables
designed WRF-WFP simulations of hypothetical wind project turbine arrays that might be built
in those areas approximately 5-10 years from today. The simulations were run for a set of 16
days, with winds from the prevailing southwesterly wind direction, selected to maximize the
waking of arrays aligned in a southwest to northeast direction. The simulations produced
dramatic hub-height project-scale wake swaths that extended over 50 km downwind, with a
specific example showing a waked wind speed deficit of 7% extending 100 km downwind from
the array of turbines that produced it. When averaged over the selected 16 simulation days,
the energy loss at the target lease area due to external wakes from arrays to its southwest was
28.9%. While the 16-day result undoubtedly greatly exceeds the long-term external wake loss
for winds from all directions, it is nonetheless illustrative of the potential for much greater
external wake losses than have been accounted for in development planning for the New York
Bight lease areas; and, as in the two onshore long-distance wake loss case studies, are much
larger than engineering wake models predict for the same conditions.

The implications of this study of long-range wakes on the assessment of energy
production (or shortfalls thereof) of existing and anticipated future wind farms is material
and significant, as unexpectedly large impacts may well be present, and existing
non-WRF-WFP-based engineering long-range wake loss methods are shown to be
inadequate. The inadequacy of these models for long-distance wakes may be remedied in
the future with further validation time-series modeling and concomitantly accurate
assessment of time periods when atmospheric stability is high. Still larger implications are
clear for long-term project valuation risk, the analysis and assessment of hybrid projects,
battery usage risk, and around-the-clock reliable renewable energy power production.
O�shore wind farms are equally strongly a�ected, and the extensive global plans for
proximal deployment of o�shore wind projects should account for such impacts.
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Abstract. As a consequence of the rapid growth of the globally installed offshore wind energy capacity, the
size of individual wind farms is increasing. This poses a challenge to models that predict energy production.
For instance, the current generation of wake models has mostly been calibrated on existing wind farms of much
smaller size. This work analyzes annual energy production and wake losses for future, multi-gigawatt wind farms
with atmospheric large-eddy simulation. To that end, 1 year of actual weather has been simulated for a suite of
hypothetical 4 GW offshore wind farm scenarios. The scenarios differ in terms of applied turbine type, installed
capacity density, and layout. The results suggest that production numbers increase significantly when the rated
power of the individual turbines is larger while keeping the total installed capacity the same. Even for turbine
types with similar rated power but slightly different power curves, significant differences in production were
found. Although wind speed was identified as the most dominant factor determining the aerodynamic losses, a
clear impact of atmospheric stability and boundary layer height has been identified. By analyzing losses of the
first-row turbines, the yearly average global-blockage effect is estimated to between 2 and 3 %, but it can reach
levels over 10 % for stably stratified conditions and wind speeds around 8 m s−1. Using a high-fidelity modeling
technique, the present work provides insights into the performance of future, multi-gigawatt wind farms for a
full year of realistic weather conditions.

1 Introduction

As part of the transition to renewable energy sources, the Eu-
ropean offshore wind energy capacity is expanding rapidly.
For example, the offshore wind energy capacity in Dutch,
Belgian, Danish, and German parts of the North Sea is an-
ticipated to reach the 65 GW mark in the year 2030 and
150 GW in the year 2050 (The Esbjerg Declaration, 2022),
whereas the European-wide target for offshore wind in 2050
is 300 GW (European Commission, 2020).

Ten years ago, the largest offshore wind farms had a ca-
pacity of around 500 MW. Nowadays this number has in-

creased to 1500 MW, and before the year 2030, wind farms
of 4000 MW will be no exception. In fact, already today clus-
ters of wind farms with a joint capacity of several gigawatts
exist. In parallel, the wind turbines themselves have been in-
creasing in size. The current generation of offshore wind tur-
bines have a nominal power of 10 to 12 MW, but this could
increase to as much as 20 MW for the year 2030. Offshore
wind energy is thus entering a new phase on three levels: the
total installed capacity, the size of the wind farms, and the
size of the individual wind turbines.

Veers et al. (2019), among others, have pointed out the
need for a better understanding of atmospheric flows through
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wind farms. In particular the growth of wind farm size poses
a challenge for models that predict energy production. The
current generation of wake models has been extensively val-
idated on wind farms in the 100-to-500 MW range. Using
these model to make predictions for the future generation of
multi-gigawatt wind farms forces them to operate well out-
side their validation range. This could at least add significant
uncertainty to their predictions. It could therefore be argued
that more physics-based models have higher fidelity in this
“terra incognita”.

One such modeling technique is large-eddy simulation
(LES). By numerically integrating the filtered conservation
equations of mass, momentum, temperature, and moisture,
LES is able to capture the essential aspects of wind farm flow
dynamics in a physically sound way. The “global-blockage”
phenomenon is a fitting example: the presence of a wind farm
induces spatial gradients in the modeled pressure field, lead-
ing to forces upwind of the wind farm, thus “informing” the
flow about the “obstacle” ahead and causing the flow to de-
flect (around and/or over the wind farm).

LES has been at the forefront of wind farm flow physics
research for some time; see for example the reviews in Mehta
et al. (2014), Stevens and Meneveau (2017), and Porté-Agel
et al. (2020). Owing to the increase in wind turbine and wind
farm scales, a number of recent studies have explored atmo-
spheric flows through large wind farms. Maas and Raasch
(2022) have studied the wake effects of a cluster of offshore
wind farms in the German Bight, exploring aspects like (far-
)wake effects, boundary layer structure, turbulence, and en-
trainment of kinetic energy for a selection of cases with dif-
ferent atmospheric stabilities. Verzijlbergh (2021) discussed
some aspects of modeling flows through large wind farms
with illustrative LES results of a 4 GW wind farm in the
North Sea.

The present work aims to explore the energy production
and internal wake effects for a suite of hypothetical 4 GW
offshore wind farm scenarios. The scenarios differ in terms
of applied turbine type, capacity density, and layout. Fur-
thermore, we study how wake losses depend on atmospheric
stability and we discuss the global-blockage phenomenon.
Amongst others, we address questions like the following:
how large are wake and blockage losses in 4 GW wind farms
and how do these depend on wind speed, wind direction,
and atmospheric stability? What is the impact of turbine size
and power density? How are losses distributed over the wind
farms for different layouts and geometries?

To this end, for a total of six hypothetical wind farm
scenarios we simulate 1 year of actual weather with the
GRASP (GPU-Resident Atmospheric Simulation Platform)
LES model. This is done by driving the LES with data from
ECMWF’s ERA5 reanalysis dataset (Hersbach et al., 2020).
In this way, we obtain representative distributions of, for ex-
ample, wind speed, stability, and baroclinicity in a natural
way (Schalkwijk et al., 2015b). The resulting dataset can be
regarded as a consistent, three-dimensional, 1-year dataset

of pseudo-observations of meteorological variables (includ-
ing wake effects) and power production (at turbine level).
As such, the present work allows for a more statistical ap-
proach to studying wind farm dynamics compared to other
LES studies that have mostly considered a set of idealized
case studies.

This paper is organized as follows. In Sect. 2 the model is
introduced. The different scenarios are described in Sect. 3.
Section 4 presents the results. After a discussion in Sect. 5,
the conclusions are summarized in Sect. 6.

2 Model description and simulation strategy

The model simulations are carried out with the GPU-
Resident Atmospheric Simulation Platform (GRASP).
GRASP is an LES code that runs almost entirely on GPUs;
see Schalkwijk et al. (2012). The origin of GRASP can be
traced back to the Dutch Atmospheric Large-Eddy Simula-
tion (DALES) model, which is extensively described in Heus
et al. (2010).

2.1 Governing equations

We present the most important governing equations below.
More details can be found in Heus et al. (2010), Böing
(2014), and Schalkwijk et al. (2015a). We follow Einstein’s
summation notation, with x1,x2,x3 = x,y,z for the coordi-
nates and u1,u2,u3 = u,v,w for the wind components. The
continuity equation reads

∂ρbuj

∂xj
= 0. (1)

In the anelastic approximation employed in GRASP, the den-
sity ρb = ρb(z) represents a base density profile depending
on height only.

ρb
∂ui

∂t
=−

∂ρbuiuj

∂xj
−
∂τij

∂xj
−
∂p′

∂xi
+ δi3ρbB

+ εij3fc
(
uj − ugeo,j

)
+

(
∂ρbui

∂t

)
sources

(2)

In the Navier–Stokes equation above, we denote buoyancy
with B. In the buoyancy calculation a height-dependent ref-
erence temperature is used. The large-scale pressure gradient
term has been written as a geostrophic wind ugeo. Further,
fc denotes the Coriolis parameter and p′ the pressure fluc-
tuations. The subgrid-scale turbulent stress, τij , needs to be
modeled with an appropriate turbulence closure. In this study
we apply the Rozema model (Rozema et al., 2015), which is
a minimum-dissipation eddy-viscosity model specifically de-
veloped for anisotropic grids. As such, τij is modeled as

τij =−2KmSij , (3)
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where

Sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
(4)

is (the symmetric part of) the velocity-gradient tensor. The
eddy viscosity/diffusivity, Km, is given by

Km = (cs1)2f
(
Sij

)
, (5)

with a term containing the grid resolution, 1; a prefactor, cs;
and some function of the velocity-gradient tensor. The pref-
actor cs is named after the so-called Smagorinsky constant in
the traditional Smagorinsky subgrid model.

Transport of heat is described by

ρb
∂ϑl

∂t
=−

∂ρbujϑl

∂xj
−
∂F ϑj

∂xj
+ Sϑl . (6)

Sources/sinks of temperature are, e.g., related to diabatic pro-
cesses such as radiative transfer. Radiative transfer calcula-
tions are carried out offline based on the ERA5 input profiles
of the relevant variables.

We use a temperature,

ϑl =
hl

cp
, (7)

which is based on moist static energy hl:

hl = cpT + gz−Lvql−Liqi. (8)

This is a conserved variable for moist adiabatic ascent. Here
cp = 1005 kJ kg−1 K−1 denotes the specific heat capacity of
air (at constant pressure), Lv = 2.25× 106 J kg−1 the latent
heat of vaporization of water, andLi = 2.84×106 J kg−1 K−1

the latent heat of sublimation of ice.
Transport of moisture is described by

ρb
∂qt

∂t
=−

∂ρbujqt

∂xj
−
∂F

q
j

∂xj
+ Sqt , (9)

where qt = qv+ ql+ qi denotes the conserved variable to-
tal specific humidity, being the sum of vapor, liquid, and
ice water. Subgrid fluxes of humidity are denoted F qj . Lo-
cal sources/sinks of humidity, denoted by Sqt , are related to
microphysics.

An “all-or-nothing” cloud adjustment scheme is used that
assumes that no cloud water/ice is present in unsaturated grid
boxes, while all moisture exceeding the local saturated vapor
pressure is considered liquid water or ice. In addition, the
Grabowski (1998) ice microphysics scheme is used. A single
precipitating prognostic variable, qr , is used. The partitioning
towards water, snow, and graupel is diagnosed with a temper-
ature criterion. Autoconversion, the initial stage of raindrop
formation, is modeled according the Kessler–Lin formulation
(Khairoutdinov and Randall, 2003).

2.2 Boundary conditions

2.2.1 Large-scale meteorological conditions

In this study, the LES is coupled to ECMWF’s ERA5 reanal-
ysis dataset. As we apply periodic lateral boundary condi-
tions, no large-scale gradients can be resolved by the LES
(a model version with open boundary conditions is currently
being developed). Initial conditions and large-scale (LS) ten-
dencies are extracted from ERA5 by means of spatial and
temporal interpolation and prescribed to GRASP as a func-
tion of height only (i.e., homogeneous over the domain). To
account for the large-scale tendencies, several model terms
are adjusted and/or added:

ρb
∂ui

∂t
= . . . + εij3f

(
uj − u

LS
geo,j

)
− ρbu

LS
i

∂uLS
j

∂xj

−wLS ∂ui

∂z
+

1
τ

(
uLS
i − ui

)
. (10)

And for any scalar φi ,

ρb
∂φi

∂t
= . . .−ρbu

LS
i

∂φLS
j

∂xj
−wLS ∂φi

∂z
+

1
τ

(
φLS
i −φi

)
. (11)

The final terms of Eqs. (10) and (11) represent nudging to the
large-scale model: the slab-averaged model fields (ui , φi) are
nudged to ERA5 with a nudging timescale, τ , of 6 h. This
timescale is long enough to give the LES physics enough
freedom to establish its own unique state but short enough
to make the simulation follow slow large-scale disturbances
such as weather fronts (Neggers et al., 2012). In the upper
quarter of the domain, the nudging timescale to ERA5 is
gradually decreased (i.e., stronger nudging) towards a value
of 60 s at the domain top.

2.2.2 Lower-boundary conditions

Over water surfaces (as in the present study), GRASP uses a
prescribed surface temperature Ts. At the surface, saturation
is assumed:

qts = qsat (Ts,ps) . (12)

The surface roughness lengths for momentum and heat,
z0m,h, are parameterized following the ECMWF IFS docu-
mentation (ECMWF, 2017):

z0m = αm
ν

u∗
+α

u2
∗

g
, (13)

z0h = αh
ν

u∗
, (14)

where α is the Charnock parameter, taken as 0.0185. Fur-
thermore, g = 9.81 m s−2 is the gravitational constant; ν =
1.5× 10−5 m2 s−1 is the kinematic viscosity of air, αm =

0.11, and αh = 0.4. For momentum, this parameterization
follows Charnock (1955) with viscous effects for light wind
conditions added.
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Figure 1. Schematic view of ERA5 boundary conditions, a precur-
sor simulation, and a nested domain with turbines.

2.2.3 Upper-boundary conditions

At the top of the domain, we take

∂u

∂z
=
∂v

∂z
= 0, w = 0,

∂φi

∂z
= constant in time. (15)

Fluctuations of velocity and scalars are damped out in the up-
per part of the domain by a sponge layer through additional
forcing/source terms added to the right-hand side of the gov-
erning equations:

ρb
∂ui

∂t
= . . . −αspρb (ui − ui) , (16)

ρb
∂φi

∂t
= . . . −αspρb

(
φi −φi

)
, (17)

with αsp being a height-dependent relaxation rate (units s−1)
that varies from 2.75×10−3 s−1 at the top of the domain to 0
at the height where the sponge layer starts, which is at 75 %
of the domain height (i.e., the sponge layer comprises the
upper quarter of the domain).

2.2.4 Lateral boundary conditions

In the present setup we apply periodic boundary conditions.
To prevent the recirculation of wind farm wakes, we make
use of a concurrent-precursor simulation (Stevens et al.,
2014). This is a simulation without wind turbines that runs
in parallel with the “actual” simulation. Over a boundary re-
gion, the values of the actual simulation are strongly nudged
towards the precursor simulation (with an adaptive nudging
timescale on the order of the model time step). A schematic
overview of this setup is shown in Fig. 1.

2.3 Wind turbine parameterization

Wind turbines are modeled by a so-called actuator-disk
model. This models each turbine as a semi-permeable disk
that exerts forces on the flow that are consistent with the
thrust curve of the wind turbine. In this way, wind farm wake
effects are taken into account. In addition, using the turbine
power curve, the turbine parameterization allows us to di-
rectly model power output per turbine at a high temporal res-
olution. The actuator-disk model is implemented following
Meyers and Meneveau (2010) and Calaf et al. (2010). Within
this parameterization, the total drag force exerted on the flow
by a wind turbine is modeled as

Ft =−
1
2
ρAC′tMD

2
, (18)

where ρ is the disk-averaged air density,A= πR2 the frontal
area of the rotor, and C′t the thrust coefficient based on the
disk-averaged wind speed MD. Wind turbine power is given
by

Pt =−
1
2
ρAC′pMD

3
, (19)

with C′p being the disk-based power coefficient. The disk-
based power and thrust coefficients are determined from the
manufacturer’s power and thrust curves by means of an of-
fline simulation. This additional step is required, since the
manufacturer curves are based on a free-stream wind speed,
M∞; a reference density, ρ0; and a reference turbulent in-
tensity, TIref. An additional advantage of this approach is
that the turbines by definition produce the correct power and
thrust for the given grid configuration. The present imple-
mentation of the actuator-disk model has been tested exten-
sively in operational practice and shows good performance
for a wide range of numerical grid settings.

In order to quantify aerodynamic losses, we compare the
energy production of the wind turbines with the production
of so-called thrustless turbines. These thrustless turbines are
embedded in the concurrent-precursor simulation. The disk-
based power coefficients for the thrustless turbines are ob-
tained by means of a separate offline simulation with the
thrust coefficients set to 0. As a result, a power production
of the thrustless turbines can be determined, but they do not
exert drag on the flow. Thus, each thrustless turbine produces
power as if it were a single isolated turbine. Furthermore, the
simulations with thrustless turbines and those with the active
turbines experience exactly the same turbulent wind fields
at the boundaries. As such, the difference between the pro-
duction of the thrustless turbines and the active turbines is a
measure of the aerodynamic loss.

2.4 Simulation strategy

For each of the wind farm scenarios (Sect. 3.1), the year 2015
was simulated. For this year, observations from the meteoro-
logical mast (metmast) “Meteomast IJmuiden” were avail-
able for basic validation. The year-long simulations consist
of concatenated daily simulations with a spin-up of 2 h. For
each day, GRASP is initialized at 22:00 UTC the previous
day. Model output valid between 00:00 and 24:00 (UTC) is
used for the analysis.

The model domain consists of 640×640×48 grid points.
The horizontal grid spacing is 120 m; the lowest grid box
has a height of 30 m. The horizontal domain size extends
to 76 800 m. Vertical grid stretching was applied to obtain
a domain height of 3000 m (i.e., a uniform growth factor of
2.845 %). Sensitivity experiments discussed in Sect. 5 indi-
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cate that this domain size is sufficiently large. The model do-
main is centered around 52.8659◦ N, 3.5364◦ E. This corre-
sponds to a location in the North Sea, roughly 100 km from
the Dutch coast within the planned 4000 MW wind farm IJ-
muiden Ver.

Compared to other LES studies (Wu and Porté-Agel, 2017;
Maas and Raasch, 2022; Strickland et al., 2022), the horizon-
tal resolution of 120 m is relatively coarse. This choice re-
sults from a trade-off between computational cost and accu-
racy and has been tested extensively in an operational setting.
As such, it follows from our ambition to simulate a full year
of realistic weather conditions, rather than the common ap-
proach of running a suite of targeted (idealized) case studies.
To provide insights into the effect of the applied resolution,
the sensitivity of the results to the grid spacing is discussed
in Sect. 5.

As a basic validation of the model’s capability to represent
the local wind conditions, Fig. 2a compares modeled versus
observed wind speed at a height of 92 m. In this case, the
modeled (horizontal) wind speed is taken from a virtual met-
mast placed at the location of the actual metmast. The cor-
respondence between model and tower observations is sat-
isfactory, with error metrics within the expected range for
wind resource assessments. Figure 2b shows the distribution
of the modeled 92 m wind speed, with a Weibull function fit-
ted to the data. For comparison, grey dots indicate the distri-
bution of the observations. Figure 2c presents the (modeled)
wind rose, indicating that southwesterly winds have the high-
est frequency of occurrence and are generally stronger than
winds from other sectors.

3 Wind farm scenarios and turbine characteristics

In this section, the six hypothetical 4000 MW wind farm sce-
narios and details of the applied turbine types will be intro-
duced.

3.1 Scenarios

Layouts of the six considered scenarios are given in Fig. 3.
The rationale for the first five scenarios is the same: each
layout consists of four sites of roughly 10 km by 10 km,
separated by 3 km wide corridors. Each of the four sites
within each scenario has an installed capacity of approxi-
mately 1000 MW (Scenario 1 to 4). The number of turbines
depends on the rated power of the applied turbine. As Sce-
nario 5 has only half the capacity density of the other sce-
narios (5 MW km−2 instead of 10 MW km−2), each of its
four sites has only half the installed capacity (i.e., 500 MW).
Scenario 6 is based on the actual site boundaries of the
planned IJmuiden Ver wind farm for which a tender is ex-
pected to open in 2023 (RVO, 2022). The installed capacity
of 4000 MW corresponds to the actual plans.

3.2 Turbine types

To study the impact of using different turbine types while
keeping the total installed power approximately the same,
four different turbine types have been applied. Three
reference wind turbines were used with data taken from
https://nrel.github.io/turbine-models/Offshore.html (last
access: 18 May 2023;the DTU_10MW_178_RWT turbine
(10.6 MW, labeled as DTU10), the IEA_10MW_198_RWT
turbine (10.6 MW, labeled as IEA10), and the
IEA_15MW_240_RWT turbine (15 MW, labeled as
IEA15)). In addition, a 21.4 MW turbine was constructed by
using the power and thrust curves from the IEA15 turbine
but increasing the rotor diameter to obtain the desired rated
power. Power and thrust curves for the four wind turbines
are given in Fig. 4. The rated wind speed of the IEA10 is
lower than that of the DTU10. Instead, the latter produces
lower thrust. Differences between the cp and ct curves of the
IEA10 and IEA15 turbines are small.

An overview of the scenarios and turbine characteristics is
given in Table 1. The installed capacity of the first four sce-
narios is close to 4200 MW. For Scenario 5, with half the ca-
pacity density, this is 2100 MW. The installed capacity for the
IJmuiden Ver scenario (Scenario 6) is a little lower than for
the other scenarios. Turbine spacing is between 5.6 and 6.2D
for the 10 MW km−2 scenarios and 8.3D for the 5 MW km−2

scenario. These values are in the range of values that occur in
existing offshore wind farms. The baseline capacity density
of 10 MW km−2 corresponds to the target set for future wind
farms in the Dutch part of the North Sea. In the following,
we consider Scenario 3 a reference, for which more detailed
analyses will be presented.

4 Results

In this section we discuss the differences in energy produc-
tion between the six scenarios. We distinguish between pro-
duction of the thrustless turbines (also called “free-stream
production” or “gross power”) and the actual production
(“net power”). We designate the difference between the two
as the “aerodynamic losses”. Depending on the application,
we present either absolute aerodynamic losses (in MW or
MW h) or relative aerodynamic losses (dimensionless) where
the absolute losses are normalized with the free-stream pro-
duction.

After analyzing the dependence of the aerodynamic losses
on the wind speed, we discuss the impact of atmospheric sta-
bility and boundary layer height. Next, losses of the first-
row turbines (i.e., turbines which have no other turbines up-
stream) will be considered, which gives an indication of the
impact of blockage effects. We will also break down our re-
sults for bins of wind direction. Apart from showing the im-
pact of wind farm layout, this illustrates that for understand-
ing directional differences, a proper separation of the wind
speed effect and the stability effect is crucial. Finally, we il-
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Figure 2. Validation results of GRASP versus offshore tall mast IJmuiden. (a) Modeled versus observed wind speed at 92 m. (b) Weibull
plot of GRASP 92 m wind speed. Grey dots represent the observations. (c) Modeled wind rose at 92 m. Colors indicate 5 m s−1 intervals.

Figure 3. Layouts of the six wind farm scenarios. Panel titles refer to the scenario labels in Table 1. For each scenario the number and type
of the applied turbine are indicated.

lustrate the results with a selection of composite maps show-
ing spatial variations in wind speed and aerodynamic losses
over the wind farms.

Figure 5 presents the overall energy production and the
aerodynamic losses for each of the six scenarios. The aero-
dynamic losses vary between 12 % and 18 % for the 4 GW
wind farms, whereas the 2 GW variant has losses of around
6 %. Several noticeable differences between the scenarios be-
come apparent.

First, although the DTU10 and IEA10 turbine have the
same rated power, the actual production of the IEA10 tur-
bine is 7.7 % larger. This significant difference is the result of
higher “free-stream” production numbers. These more than
compensate for the slightly higher aerodynamic losses. Both
the higher production and the higher aerodynamic losses for
the IEA10 scenario can be related to a difference in the ro-

tor diameter and a different behavior of the respective power
curves (see Fig. 4).

Second, while keeping the same installed power, it appears
to pay off to apply fewer but more powerful turbines. This is
shown by comparing the IEA10, IEA15, and Scaled21 sce-
narios. While these three scenarios have similar free-stream
production, their actual production varies significantly: for
IEA10, production is 5.3 % less than for IEA15, and for
Scaled21, the production is 2.8 % more. In terms of aerody-
namic losses, this implies a reduction from 18.4 % for IEA10
to 11.8 % for Scaled21. At the same time, Table 1 indicates
that the turbine spacing in terms of rotor diameters is ap-
proximately the same for these three scenarios. This suggests
that the (relative) reduction in the number of turbines that is
hampered by wakes of other turbines is a major factor con-
tributing to higher production (for instance, the ratio of the
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Table 1. Overview of the six scenarios, including turbines characteristics. Turbine radius is denoted by r , turbine rated power by Prated,
the wind farm installed capacity by Pinstalled, and the number of installed turbines by N . Turbine spacing is given in number of rotor
diameters, D.

Scenario Label Turb. type Hub r Prated N Pinstalled Spacing Density
height [m] [MW] [–] [MW] [MW km−2]

[m]

1 DTU10 DTU_10MW_178_RWT 119 89 10.6 396 4198 6.2D 10.5
2 IEA10 IEA_10MW_198_RWT 119 98 10.6 396 4198 5.6D 10.5
3 IEA15 IEA_15MW_240_RWT 150 120 15.0 280 4200 5.6D 10.5
4 Scaled21 Scaled_21.4MW_WT 173 143 21.4 196 4194 5.8D 10.5
5 5MW/km2 IEA_15MW_240_RWT 150 120 15.0 140 2100 8.3D 5.4
6 IJVer IEA_15MW_240_RWT 150 120 15.0 268 4020 5.3D 10.4

Figure 4. Power and thrust curves for the applied turbine types.

Figure 5. Total free-stream and actual production (a) and aerody-
namic losses (b) for the six scenarios.

number of first-row turbines over “wake-impacted” turbines
will increase (beneficially) when the total number of turbines
becomes smaller).

Third, Fig. 5 illustrates the impact of varying the in-
stalled capacity per square kilometer. As expected, in the
5 MW km−2 scenario, the free-stream production is reduced
by 50 % compared to the reference IEA15 scenario. How-
ever, the actual production decreases only by 45.2 %. The
aerodynamic losses decrease drastically from 14.3 % to
6.5 %.

Fourth, the results of the IJVer scenario are comparable to
the IEA15 scenario. Its free-stream production is a bit less,
because the installed capacity is slightly lower. Also, its aero-
dynamic losses are slightly higher, which is mainly related to
the absence of the 3 km wide corridors (see Fig. 3).

In summary, the present results indicate that expected
aerodynamic losses for a 4 GW offshore wind farm are in the
range of 12 % to 18 %, where the exact value is determined
by the rated power of the applied turbines (or, the number of
installed turbines). Moreover, turbines of the same rated ca-
pacity but different power curves may give significantly dif-
ferent production numbers. We emphasize that absolute num-
bers are related to the prevalent wind conditions in the sim-
ulated year 2015. To obtain annual energy production (AEP)
estimates that are representative of a longer period, additional
statistical postprocessing of the data is required, but this is
out of the scope of the present work.

4.1 Wind speed dependence of production and losses

Figure 6 considers energy production and aerodynamic loss
as a function of the free-stream disk-averaged wind speed
(i.e., the disk-averaged wind speed from the thrustless tur-
bines in the concurrent-precursor simulation). From left to
right, the top panels represent averaged instantaneous wind
farm production over the year, total energy production, and
normalized cumulative production, respectively. The bottom
panels show the equivalent aerodynamic losses. The results
presented here are representative of the wind climate and the
specific turbine design choices. A few interesting observa-
tions can be made.

First, Fig. 6a indicates that for wind speeds stronger than
14 m s−1, all scenarios operate at rated power. For these
strong wind conditions, which generate 50 % of the total en-
ergy production (Fig. 6c), the energy content of the flow is so
large that aerodynamic losses are negligible.

Second, Fig. 6d–f illustrate that 80 % of all aerodynamic
losses occur within a narrow wind speed range of 8 to
12 m s−1. For lower wind speeds, production and losses are
low anyway; for higher wind speeds, all turbines operate
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Figure 6. (a–c) Year-averaged wind farm power production (a), total energy production for 1 m s−1 bins (b), and normalized cumulative
production (c) as a function of the free-stream disk-averaged wind speed. (d–f) Year-averaged wind farm power losses (d), total aerodynamic
losses for 1 m s−1 bins (e), and normalized cumulative losses (f) as a function of the free-stream disk-averaged wind speed.

at (or close to) rated power. Around cut-out wind speeds,
substantial instantaneous negative losses occur (Fig. 6d).
This remarkable feature is caused by the fact that for these
wind speeds, as a result of subtle wake effects, the number
of power-producing turbines in the simulations with actual
(thrust-generating) turbines is larger than in the simulations
with the thrustless turbines. As the frequency of occurrence
of these specific wind conditions is low, the impact of this
effect on the integrated losses is small (Fig. 6e).

Third, the total energy production peaks around a wind
speeds of approximately 12 m s−1. This can be understood
by interpreting the total energy production as a function of
wind speed as a multiplication of the wind speed probability
density (Fig. 2b) and the power curves.

Differences between the six scenarios are small. They are
consistent with the total production numbers of Fig. 5 and
can be explained by the differences in the turbine power
curves (Fig. 4).

4.2 Impact of stability and boundary layer height

In this sub-section, we attempt to isolate the impact of sta-
bility and boundary layer height from the impact of the wind
speed itself. For clarity reasons, mainly results for the IEA15
reference scenario are presented.

The impact of atmospheric stability on wake losses of
wind farms has been widely reported in the scientific liter-
ature; see, e.g., Stevens and Meneveau (2017). As a stability
parameter, we choose the bulk Richardson number, Rb, over
the rotor blade of the IEA15 turbine, i.e., between heights of
270 and 30 m:

Rb =
g

ϑl

1z1ϑl

(1u)2+ (1v)2 . (20)

Values of Rb are taken from the precursor simulation. As
such, they represent free-stream (or undisturbed) conditions.
We consider three classes of stability, separated by the per-
centiles 33.3 and 66.6 of the year-round distribution of Rb,
which have values of −0.04 and 0.44, respectively. As such,
the stability class with the 33.3 % of lowest Rb values repre-
sents convective conditions, while the class with the 33.3 %
of highest Rb values represents significantly stable condi-
tions. The class of intermediate stability contains neutral con-
ditions but is dominated by weakly stratified conditions.

Figure 7 presents the aerodynamic losses as a function of
the free-stream disk-averaged wind speed for the three sta-
bility classes for the IEA15 scenario. For a wide range of
wind conditions, the impact of stability is small. However,
just in the wind speed range where most of the actual losses
occur, a clear impact of stability is observed. Here, for the
most stably stratified conditions, relative losses are roughly
10 percentage points larger than for convective conditions.
For higher wind speeds, losses quickly reduce to zero, irre-
spective of stability. For lower wind speeds, absolute losses
(and production) are small.

The strong dependency of aerodynamic losses on the wind
speed may easily obscure an analysis of the impact of stabil-
ity. The relevant wind speed range for considering the impact
of stability seems to be between 6 and 10 m s−1. This narrow
range of wind speeds is characterized by near-constant rela-
tive losses, which allows for a fair comparison between sta-
bility conditions. As can be seen in Fig. 4, this specific wind
speed range coincides with the power and thrust curves being
at their maximum. In the following, to indicate any impact of
stability, we include only data for which the wind speed is
between 6 and 10 m s−1.
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Figure 7. Combined effect of wind speed and stability on wind farm aerodynamic losses. (a) Power losses in megawatts (MW). (b) Relative
aerodynamic losses. (c) Frequency of occurrence of the three stability classes. Dashed lines at 6 and 10 m s−1 indicate the wind speed interval
for which the aerodynamic losses are relatively constant. The horizontal dashed line in (b) indicates the overall aerodynamic loss.

Table 2. Relative aerodynamic losses per scenario for free-stream
disk-averaged wind speeds between 6 and 10 m s−1, for the three
stability classes.

Scenario Unstable Neutral Stable

DTU10 0.29 0.37 0.45
IEA10 0.34 0.41 0.48
IEA15 0.29 0.35 0.38
Scaled21 0.26 0.29 0.32
MW km−2 0.14 0.18 0.20
IJVer 0.32 0.36 0.41

Table 2 summarizes the relative aerodynamic losses for all
six scenarios for disk-averaged wind speeds between 6 and
10 m s−1. Considerable differences between scenarios exist:
the higher the overall aerodynamic losses (cf. Fig. 5), the
larger the impact of stability. For example, the impact of
stability is clearly smaller for the Scaled21 and 5 MW km−2

scenarios.
To summarize, the impact of stability is only significant

for a small range of wind speed conditions. However, it is
exactly this range that is also most relevant for aerodynamic
losses.

Apart from stability, other LES wind farm studies indi-
cate that the boundary layer height, h, may have substantial
impact on wakes and wind farm production (e.g., Maas and
Raasch, 2022). Here, we examine the influence of the bound-
ary layer height on the aerodynamic losses for the IEA15 sce-
nario. To that end, we diagnosed the boundary layer height
from model output of the precursor simulation (undisturbed
conditions). We take h as the height at which the magnitude
of the momentum flux becomes less than 5 % of its surface
value.

We distinguish three classes of h, separated by the per-
centiles 33.3 and 66.6 of the year-round distribution of h,
which have values of 341 and 955 m, respectively. Figure 8
presents the aerodynamic losses as a function of the free-

Table 3. Contingency table showing the simultaneous frequency of
occurrence (in %) of the three classes of stability (unstable, neutral,
stable) and boundary layer height (low, medium, high).

Low Medium High Total

Unstable 0.3 13.9 19.1 33.3
Neutral 6.1 15.8 11.4 33.3
Stable 24.6 5.2 3.6 33.3
Total 31.0 34.9 34.1 100.0

stream disk-averaged wind speed for the three classes of
boundary layer height. The results show remarkable resem-
blance with the stability analysis (Fig. 7). Also here, the im-
pact is mostly confined to the wind speed range between
6 and 10 m s−1. Within this range, aerodynamic losses for
shallow boundary layers are clearly (around 10 percentage
points) higher than for deep boundary layers.

Obviously, stability and boundary layer height are related.
This is illustrated in Table 3, which shows the simultane-
ous occurrence of the three classes of stability and boundary
layer height. Especially the shallow boundary layers clearly
coincide with stably stratified conditions.

4.3 First-row losses

As with any obstacle placed in a flow, wind farms will have
an impact on the flow itself. The air will tend to flow around
and over the obstacle, and in front of the wind farm a re-
duction in wind speed is expected. This will lead to a reduc-
tion in power production of the turbines that are not in the
wake of other turbines (i.e., located in the “first row”). This
phenomenon is know as the global-blockage effect (Bleeg
et al., 2018). As the wind speed reduction will propagate to
downstream (“waked”) turbines, separating the blockage ef-
fect from wake effects is virtually impossible. This is espe-
cially true for observations and physically based modeling
studies like LES. Therefore, in this study we focus on losses
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Figure 8. Combined effect of wind speed and boundary layer height on wind farm aerodynamic losses. (a) Power losses in megawatts (MW).
(b) Relative aerodynamic losses. (c) Frequency of occurrence of the three boundary layer height classes. Dashed lines at 6 and 10 m s−1

indicate the wind speed interval for which the aerodynamic losses are relatively constant. The horizontal dashed line in (b) indicates the
overall aerodynamic loss.

Figure 9. (a) Total production, production of “wake-affected” tur-
bines, and production of first-row turbines for all six scenarios.
(b) Aerodynamic losses.

of the first-row turbines, which can be interpreted as a con-
servative estimate for the blockage effect.

We determine the first-row losses as follows: given the
wind direction, for each time step we verify if any other tur-
bines are located within a 60◦ wide sector opposite to the
flow direction. If this is not the case, a turbine is classified as
a first-row turbine for that particular time step.

Figure 9 presents the year-round production numbers and
relative aerodynamic losses for the first-row turbines and all
other (waked) turbines. The actual production of the first-
row turbines is between 2 % and 3 % lower than their cor-
responding thrustless (or free-stream) production. Although
the applied definitions and metrics can be discussed, these
values are not inconsistent with values of the blockage ef-
fect reported in the literature (e.g., Wu and Porté-Agel, 2017;
Allaerts et al., 2018; Bleeg et al., 2018; Schneemann et al.,
2021). Consistently, the losses of the non-first-row, or other,
turbines are a bit higher than the overall losses.

As with the overall aerodynamic losses above, we can
also assess the impact of both wind speed and stability on
the first-row losses. Figure 10 shows that, consistently with
the above results (e.g., Fig. 6), also the first-row losses are

Figure 10. The reduction in the first-row 140 m wind speed com-
pared to the free-stream wind speed (a) and the relative aerody-
namic losses of first-row turbines (b) as a function of wind speed
and stability.

negligible for wind speeds over 12 m s−1. Interestingly, the
first-row wind speed deficit with respect to free-stream con-
ditions continues towards much higher wind speeds. The ma-
jority of the first-row losses occur for wind speeds between
6 and 10 m s−1. Values range from 4 % in convective condi-
tions to 8 % in the most stable conditions. The corresponding
first-row wind speed deficits vary from approximately 0.12 to
0.30 m s−1. Relative first-row losses are even higher for wind
speeds below 6 m s−1, but these are less relevant in an abso-
lute sense (not shown).

We conclude that first-row losses are on average between
2 % and 3 %. However, for the wind speed range where most
of the losses occur these numbers can be more than twice as
high. Also, first-row losses are significantly larger for stably
stratified conditions (cf. Strickland et al., 2022).

4.4 Directional effects

An analysis of aerodynamic losses per wind direction reveals
how the respective impacts of wind speed and stability are
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Figure 11. Directional dependence of total energy production (a), absolute aerodynamic losses (b), and relative losses (c) for the six scenar-
ios.

entangled. Moreover, it shows the impact of difference in the
layout and geometry of the wind farm scenarios.

Figure 11 shows energy production and aerodynamic
losses as a function of the wind direction. The first element
that stands out is the overwhelming dominance of the contri-
bution of southwesterly winds to the total energy production.
This is the cumulative effect of both the higher frequency
of occurrence and the generally stronger wind speeds (see
Fig. 2c), in combination with a strongly non-linear character
of the turbine power curves.

Figure 11b and c show that while the absolute losses are
largest for the southwesterly direction, the relative losses are
much higher for easterly directions. From this figure, it can-
not be determined if the difference in relative losses is mainly
a wind speed effect or if stability is important here. Interest-
ingly, the five hypothetical layouts closely follow the same
pattern, but the IJVer scenario behaves differently. Compari-
son with Fig. 3 suggests that this difference is related to the
different layout of the IJVer scenario: while other scenarios
form north–south- and west–east-facing squares, the IJVer
layout is significantly rotated (but still resembling a clear
“square-like” shape). Inspection of Fig. 11b and c indicates
that aerodynamic losses are higher/lower when the flow is
directed towards the faces/corners of the wind farm layouts.

For two of the scenarios, IEA15 and IJVer, Fig. 12 breaks
down the directional losses into stability and wind speed.
Figure 12a and b present the relative aerodynamic losses for
the three stability classes defined above, irrespective of the
wind speed. Losses for stably stratified conditions are the
largest, but the losses for convective conditions are also large.
Because of generally higher wind speeds (i.e., lower thrust
coefficients), the losses for the near-neutral class are much
smaller, even when omni-direction numbers are considered
(not shown).

As a next step, the bottom panels of Fig. 12 present
stability-dependent losses like before but now only including
wind speeds between 6 and 10 m s−1. By doing so, a clear
organization of the data occurs, with the lowest losses oc-
curring for convective conditions and the highest losses for
the most stably stratified conditions. Moreover, a clear di-

Figure 12. Directional dependence of total aerodynamic losses for
different stability classes for the IEA15 (a, c) and IJVer (b, d) sce-
narios. The top panels (a, b) are based on all data; the bottom panels
(c, d) only include wind speeds between 6 and 10 m s−1.

rectional pattern is revealed, in particular for the IEA15 sce-
nario, with much higher losses when the flow is directed to
the sides of the wind farm and lower losses when the flow
faces the corners of the wind farm. This pattern is clearly
visible for all three stability classes. For the IJVer scenario
the directional pattern is more obscured.

In summary, Fig. 12 demonstrates that an assessment of
the impact of stability on wind farm losses is not straightfor-
ward. It can only be isolated if the data are also conditioned
over a particular, carefully selected wind speed range. This
is because both the turbine thrust curves and the stability de-
pend on the wind speed but in different ways. To avoid the
impact of wind speed as much as possible, this range should
not be too broad, as small differences in wind speed can have
a large impact on both absolute and relative aerodynamic
losses (Fig. 7).

4.5 Spatial patterns

So far, we have only considered power production and aero-
dynamic losses for the wind farms as a whole. In the fol-
lowing section, we consider spatial variations in wind speed,
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Figure 13. Aerodynamic losses (a), mean 140 m wind speed (b), and ratio of actual to free-stream wind speed (c) for the IEA15 scenario
(including all data).

Figure 14. Same as Fig. 13 but for the 5 MW km−2 scenario (including all data).

power production, and aerodynamic losses over the wind
farms. By breaking down the dataset into bins of wind di-
rection, wind speed, and stability classes, the impact of dif-
ferent atmospheric conditions can be examined. A selection
of composite maps of aerodynamic losses, wind speed, and
the ratio of actual to free-stream wind speed (taken from the
precursor simulation) are presented.

Figure 13 shows aerodynamic losses, mean wind speed,
and velocity deficit compared to the free-stream flow for the
IEA15 scenario, averaged over the entire year and all wind
directions. Losses vary from around 6 % for turbines located
at the outer parts of the wind farm to 20 % for turbines in the
interior of the wind farm. The dominance of stronger south-
westerly winds is reflected in lower losses in the southwest-
ern part of the wind farm and a clear asymmetry in the com-
posite wind fields. The impact of the wind farm on the year-
round, omni-directional wind field is on the order of 20 km,
after which a velocity deficit of less than 1 % is observed.

For comparison, Fig. 14 shows the results for the
5 MW km−2 scenario. As expected, losses are much lower
compared to IEA15, which has a capacity density of around
10 MW km−2. This is the combined effect of larger distance
between the turbines and the fact that only half the number of
turbines is involved. The impact on the mean wind field and

the corresponding velocity deficit is smaller as well: in the
center of the wind farm the velocity deficit is 6 %, compared
to 12 % in the 10 MW km−2 case.

Figure 15 presents composite maps for the IEA15 sce-
nario again but now only including data with a wind direc-
tion between 15 and 45◦. In this case, a clear wake is visible,
which is still present as the flow reaches the southern edge of
the domain. Clearly, for studying wake lengths behind wind
farms of this size, much larger domains are required than
the present 80 km. Upstream, the wind speed is already re-
duced before the flow reaches the wind farm, which signals
the presence of blockage. Along the sides, a clear flow ac-
celeration is visible. The distribution of aerodynamic losses
over the wind farm shows interesting patterns. Although not
in the wake of any other turbines, the first-row turbines in
the northeastern corner of the wind farm produce 10 % less
power than their “thrustless” equivalents. On the other hand,
the turbines in the southeastern part profit from the flow ac-
celeration around the wind farm and produce up to 5 % more
power than if they had operated in isolation.

Comparison of Fig. 15 with Fig. 16 clearly illustrates the
difference in the flow being oriented to the corner of the wind
farm or directly towards the one of the sides. In the case of
the latter, the numbers of turbines that are facing undisturbed
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Figure 15. Same as Fig. 13 but only including wind directions between 15 and 45◦.

conditions (apart from blockage effects) is much less, result-
ing in larger aerodynamic losses (cf. Fig. 12).

The different layout of the IJVer scenario results in rel-
atively low aerodynamic losses for easterly flow (Fig. 17).
Also here, flow acceleration around the wind farm leads to
increased production for, in this particular case, the north-
ernmost turbines.

Finally, Figs. 18 and 19 illustrate the impact of convec-
tive and stable conditions, respectively. To enable a “fair”
comparison, only conditions with wind speeds between 6 and
10 m s−1 are included. As shown before, in this wind speed
range the aerodynamic losses are much higher than average.
In stably stratified conditions, deeper wakes occur that ex-
tend further downstream. Also, the wind speed reduction up-
stream of the wind farm is larger in stable conditions. This
is reflected in larger first-row losses compared to convec-
tive conditions. Moreover, going deeper into the wind farm,
losses increase faster for stable than for convective condi-
tions: near the southern edge of the wind farm, turbine losses
increase to around 60 % for stable conditions, while they are
confined to approximately 40 % in convective conditions.

5 Discussion and sensitivity study

To assess production numbers and aerodynamic losses for a
suite of hypothetical 4 GW offshore wind farms, a full year
of simulations with the LES model GRASP have been per-
formed. Even though GRASP has a relatively high computa-
tional performance due to its implementation on GPUs, the
computational costs of the simulations are significant. That
is to say, in order to enable the atmospheric simulations of
large wind farms covering an entire year, the configuration
of both the model grid and the domain needs to be carefully
selected to limit computational cost while maintaining phys-
ically sound results.

Because the applied horizontal grid spacing of 120 m
might be considered coarse for an atmospheric LES model
and/or for the actuator-disk model that is used, we consider
an assessment of the sensitivity of the modeling results ap-

propriate. Therefore, additional simulations have been per-
formed in which we varied the resolution, the prefactor of
the subgrid model (governing the magnitude of the subgrid-
scale diffusion), and the domain size (both height and hor-
izontal extent). The sensitivity experiments were performed
on a smaller domain of 30 720 m. A wind farm of around
770 MW was included. To assess if relative differences be-
tween scenarios remained the same, each sensitivity experi-
ment was carried out twice: once with 72 of the IEA10 tur-
bines (regular 9 by 8 array, spacing of 5.6D) and once with
36 of the Scaled21 turbines (regular 6 by 6 array, spacing of
5.8D). The sensitivity experiments were not run for the en-
tire year but for a representative subset of 100 d. The 100 d
was selected by a k-means clustering method based on the
daily mean of the longitudinal and latitudinal components of
the ERA5 100 m wind.

Specifically, the following sensitivity experiments have
been performed:

– REF. This is a reference simulation on a 30 720 m do-
main of 3000 m height. The horizontal grid spacing was
120 m and the height of the lowest grid box 30 m (as in
the main simulations). The number of grid points was
256 in the horizontal and 48 in the vertical.

– HR. This is the same as REF but with the horizontal
grid spacing set to 60 m. To keep the domain size the
same, the number of grid points in the horizontal was
increased to 512.

– Cs. This is the same as REF but with the cs prefactor
of the subgrid-scale eddy diffusivity increased by 50 %
(see Eq. 5).

– 2Lx . This is the same as REF but with a twice as large
horizontal domain of 61 440 m using 512 grid points in
both horizontal directions.

– 2Lz. This is the same as REF but with the domain height
increased to 6000 m using 68 vertical levels.
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Figure 16. Same as Fig. 13 but only including wind directions between 75 and 105◦.

Figure 17. Same as Fig. 13 but for the IJVer scenario, only including wind directions between 75 and 105◦.

– 5Lz. This is the same as REF but with the domain height
increased to 14 500 m using 96 vertical levels.

Modifying the modeling setup may impact both the am-
bient conditions (which will change the thrustless produc-
tion numbers) and the interaction between the turbines of
the wind farm (changing the aerodynamic losses). Figure 20
presents the relative differences between each sensitivity ex-
periment and the REF experiment. Differences in free-stream
(thrustless) production are mostly less than 1 %. The same is
true for the actual production numbers. Naturally, the aero-
dynamic losses of the sensitivity experiment are smaller than
in the main simulations as the installed capacity is smaller.

Increasing the resolution from 120 to 60 m leads to slightly
lower aerodynamic losses. This is expected as at finer reso-
lutions, turbine wakes are more accurately resolved and less
smeared out over the grid. Still, the impact is relatively small,
especially given the factor-of-8 difference in computational
cost (number of points in the domain and a 50 % reduction in
the model time step). Increasing the prefactor of the subgrid-
scale eddy diffusivity cs by 50 % increases the subgrid-scale
diffusion, logically leading to a decrease in resolved fluctu-
ations. As shown by the cs experiment, the impact on the
aerodynamic losses is small. A common way to assess the
validity of a large-eddy simulation is to consider the fraction

of resolved turbulence. In our main simulation, the resolved
fraction of the momentum flux is larger than 80 % for 70 % of
the time (at a height of 150 m, which is the hub height of the
IEA15 turbine). For stably stratified conditions the contribu-
tion of the subgrid-scale fluxes is larger, but situations where
all turbulent fluctuations disappear are rare. In practice, a rel-
atively large (fractional) subgrid-scale contribution may have
limited effect, as the absolute values of the turbulent fluxes
are small.

The sensitivity experiments were performed for two con-
trasting wind farm scenarios in order to verify the robustness
of the relative differences between the scenarios. Figure 20b
indicates that while the aerodynamic losses may change a bit
between the sensitivity experiments, the two scenarios show
similar patterns. This gives confidence in the comparison be-
tween different scenarios in Sect. 4.

It can be argued that the impact of the sensitivity experi-
ments as discussed above is masked by the fact that for wind
speed above 14 m s−1 (related to 50 % of the production),
losses are negligible anyway (cf. Fig. 6). Therefore, Fig. 21
presents relative aerodynamic losses for disk-averaged wind
speeds between 6 and 10 m s−1. As expected, aerodynamic
losses for this specific wind speed range are higher than the
overall losses, as are the differences between the scenarios.
Still, differences with the REF simulations remain within
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Figure 18. Same as Fig. 13 but only including convective conditions, wind speeds between 6 and 10 m s−1, and wind directions between
15 and 45◦.

Figure 19. Same as Fig. 13 but only including stable conditions, wind speeds between 6 and 10 m s−1, and wind directions between 15 and
45◦.

Figure 20. Free-stream and actual production of the sensitivity ex-
periments with respect to REF (a) and the corresponding aerody-
namic losses (b).

Figure 21. Stability-dependent aerodynamic losses for disk-
averaged wind speeds between 6 and 10 m s−1 for the IEA10 (a)
and Scaled21 (b) sensitivity experiments.

reasonable limits. Presented numbers are for the three sta-
bility classes defined above. The differences between the sta-
bility classes are similar for the different sensitivity experi-
ments. This gives confidence in the analysis on the impact of
stability in the main Results section.

Increasing the horizontal and increasing the vertical ex-
tent of the domain both have a modest impact on the produc-
tion numbers and aerodynamic losses. With a twice-as-large
horizontal domain, the aerodynamic losses become slightly
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Figure 22. Ratio of actual to free-stream 142 m wind speed for the REF (a), the 2Lx (b), the 2Lz (c), and the 5Lz (d) IEA10 sensitivity
experiments for wind directions between 15 and 45◦.

higher. This may be related to the additional space around
the wind farms, reducing the tendency of the flow to acceler-
ate along the wind farm’s edges.

Recently, several LES wind farm studies have argued that
for a proper modeling of flow through large wind farms,
large domain heights (usually more than 10 km) are required.
In particular, these large domain heights would be needed
for a proper modeling of wind-farm-induced gravity waves
and their impact on blockage effects and production num-
bers (e.g., Allaerts and Meyers, 2017; Lanzilao and Mey-
ers, 2022). Therefore, we performed two sensitivity simu-
lations with increased domain height: one with a height of
6 km (2Lz) and one with a height of 14.5 km (5Lz). The re-
sults presented in Figs. 20 and 21 do not indicate a significant
sensitivity of our results to the domain height (in contrast, ex-
plorative model simulations in the early stages of the present
study indicated that reducing the domain height to, for in-
stance, 2000 m does have a clear impact on the results).

In addition, Fig. 22 shows the impact of the domain con-
figuration on the ratio of actual to free-stream 140 m wind
speeds for wind directions between 15 and 45◦. For com-

parison, the results of the 2Lx simulation are cropped to the
extent of the REF domain. While the evolution of the wake is
comparable to the REF simulation, in the 2Lx simulation the
flow acceleration along the edges of the wind farm is weaker.
The same effect can be seen when the domain height is in-
creased from 3000 to 6000 m (2Lz). Increasing the domain
height even further, to 14 500 m (5Lz), has a negligible ef-
fect on the flow field. This is true for both the downstream
evolution of the wake and the reduction in the wind speed
upstream of the wind farm.

The relatively small impact of the domain height reported
here may be somewhat surprising given the findings of the
studies cited above. However, it could well be that in our
study the impact of, for instance, gravity waves is masked
by the large variety of synoptic forcings and boundary layer
conditions associated with 1 year of actual weather.

The sensitivity experiments discussed in this section give
a clear indication of the robustness of the presented results:
modifying grid spacing, settings of the subgrid model, and
the extent of the domain within reasonable margins will
likely change the results to several percent at maximum.
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Overall, we argue that the sensitivity experiments presented
here do not invalidate the reasoning and conclusions dis-
cussed in the Results section.

Also, from a broader perspective, the sensitivities de-
scribed here are not larger than, for instance, sensitivities that
are reported in studies with mesoscale models that use wind
farm parameterizations like the Fitch et al. (2012) parameter-
ization and/or the explicit wake parameterization of Volker
et al. (2015) as discussed in, for example, Pryor et al. (2019)
and Fischereit et al. (2022). In addition, engineering models
rely on calibration on wind farms with much smaller installed
capacities as discussed in the present work, and extrapola-
tion to large wind farms is not straightforward. For exam-
ple, Maas and Raasch (2022) demonstrate that flow dynamics
for multi-gigawatt wind farms may differ significantly from
those for smaller-scale wind farms.

6 Conclusions

In this work we studied production numbers and aerody-
namic losses for six hypothetical 4 GW offshore wind farm
scenarios using the GRASP large-eddy simulation model.
The six scenarios differed in terms of applied turbine type
(e.g., 2n× 10 MW turbines versus n× 20 MW turbines), in-
stalled capacity density (5 MW km−2 versus 10 MW km−2),
and layout. For each scenario, a 1-year GRASP simulation
was performed using 2015 meteorological large-scale condi-
tions taken from ECMWF’s ERA5 reanalysis dataset.

The results suggest that, for the simulated year, aerody-
namic losses for a 4 GW offshore wind farm vary from 12 %
for 21 MW turbines to 18 % for 10 MW turbines. Moreover,
even for turbine types with similar rated capacity but slightly
different power and thrust curves, energy production may
vary by as much as 7.7 %.

For all considered scenarios, 80 % of the aerodynamic
losses occur in a narrow wind speed range of 8 to 12 m s−1.
On the other hand, 50 % of the energy production occurs
without any aerodynamic losses when all turbines operate
at rated capacity. Naturally, these specific numbers should
be viewed in the context of the wind speed probability den-
sity function considered and the wind turbine design choices
(power curves).

Although wind speed is identified as the most important
factor determining aerodynamic losses, we were able to iso-
late the impact of stability. A fair assessment of this impact
seemed possible by only considering wind speeds between
6 and 10 m s−1. In this wind speed range, aerodynamic losses
may be 10 percentage points larger for stably stratified con-
ditions compared to convective conditions. Numbers vary
per scenario with larger differences for scenarios with higher
overall losses.

Losses of first-row turbines, which are related to the
global-blockage effect, were found to be 2 % to 3 % in gen-
eral. These values are consistent with values of the blockage

effect reported in the literature. As with the general losses,
also the first-row losses occur in a narrow range of disk-
averaged wind speeds. Also, a clear impact of stability is
identified. For example, for disk-averaged wind speeds be-
tween 6 and 10 m s−1, first-row losses may increase to almost
10 % in stably stratified conditions.

The complexity of disentangling the effect of wind speed
and stability is illustrated by considering direction-dependent
aerodynamic losses. Only when selecting proper wind speed
conditions does a clear impact of stability and of the geome-
try of the respective scenarios become apparent. For instance,
when the flow is facing the corners of a square-shaped wind
farm, losses are clearly lower than when the flow is directed
towards the faces of the wind farm.

Sensitivity experiments were carried out to better under-
stand the impact of various modeling choices such as resolu-
tion and domain height. Results suggest that overall energy
production varies with 1 % to 2 % depending on model set-
tings and/or the domain configuration. Relative differences
between the IEA10 and Scaled21 turbine scenario are robust.

In summary, using a high-fidelity modeling technique, the
results presented in this explorative study provide a clear in-
dication of the performance of future, multi-gigawatt wind
farms for 1 year of realistic weather conditions. Further
research could address several open questions like the in-
fluence of the lateral boundary conditions, inter-wind-farm
wake effects, and more validation against meteorological ob-
servations and wind farm data. More elaborate validation
studies could also shed more light on the resolution depen-
dence of the aerodynamic losses.
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Highlights

Current U.S. east coast offshore

wind lease areas can supply 3% of

electricity

On average wakes extend over

nearly 3-times footprint of the

wind turbine arrays

Power and wakes are nonlinear

functions of wind turbine density

and meteorology

Guidance is provided for layouts

of large offshore wind farms

around the world
Many countries are planning development of very large offshore wind farms to aid

decarbonization of the energy sector. High-resolution numerical simulations are

performed to quantify power production (capacity factors [CFs]) and the spatial

scale and effects of downstream wakes (areas of disturbed flow) from lease areas

that are under development along the U.S. east coast. Descriptions of wake extent

and power as a function of prevailing meteorology and wind-farm layout (installed

capacity density [ICD]) are presented.
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Wind power production from very
large offshore wind farms

Sara C. Pryor,1,3,* Rebecca J. Barthelmie,2 and Tristan J. Shepherd1
Context & scale

Massive upscaling of wind turbine

deployments offshore is critical to

achieving global and national

goals to decarbonize the

electricity supply. The excellent

wind resource and proximity to

large markets along the U.S. east

coast mean it is the focus of

America’s first-phase offshore-

wind projects. Thousands of

physically larger and higher

capacity wind turbines will be

deployed over areas of

unprecedented scale. The scale of

these installations and those

planned by other countries raises

questions regarding potential

reductions of electrical-power-

production efficiency due to the

operation of wind turbines in

disturbed flow (wakes) from

upwind wind turbines and wind

farms. In this work, guidance is

provided regarding the optimal

layout of this new generation of

wind farms to harness offshore

wind resources in a manner that

maximizes electricity production

and minimizes the levelized cost

of energy.
SUMMARY

We provide the first quantitative assessment of power production and
wake generation from offshore wind energy lease areas along the U.S.
east coast. Deploying 15-MW wind turbines, with spacing equal to the
European average, yields electricity production of 116 TWh/year or 3%
of current national supply. However, power production is reduced by
one-third due to wakes caused by upwind wind turbines and wind
farms. Under some flow conditions whole wind-farmwakes can extend
up to 90 km downwind of the largest lease areas, and the frequency-
weighted average area with a 5% velocity deficit is 2.6 times the
footprint of the lease areas. Simulations including maritime corridors
demonstrate reduction in the wake effects leading to power-efficiency
gains and may offer contingent benefits. First-order scaling rules are
developed that describe how ‘‘wake shadows’’ from large offshore
wind farms scale with prevailing meteorology and wind turbine
installed densities.

INTRODUCTION

The move to reduce energy-related greenhouse gas emissions is gathering interna-

tional momentum fueled by both the urgent need to reduce anthropogenic forcing

of climate1–3 and rapid declines in the cost of renewable generation sources.4 The

government of the United Kingdom has committed to net zero greenhouse gas

emissions by 2030. A critical part of that commitment is to deploy 40 GW of offshore

wind, sufficient to power every home in the United Kingdomby 2030.5 The European

Commission’s long-term strategy for decarbonization assumes the installation of

400 to 450 GW of offshore wind capacity within European waters by 2050.6 In March

2021, the White House made a commitment to deploy 30 GW of offshore wind as

part of a move to reduce U.S. greenhouse gas emissions by 50% from 2005 levels

in 2030 and a carbon-pollution-free power sector by 2035 (see White House briefing

at; https://www.whitehouse.gov/briefing-room/). China has also committed to

increasing the installed capacity of wind and solar power to over 1,200 GW by

2030 from 414 GW in 2019 (see press coverage at https://www.reuters.com/

article/climate-change-un-china/chinas-xi-targets-steeper-cut-in-carbon-intensity-

by-2030-idUSKBN28M0ND). This unprecedented and rapid expansion of offshore

wind energy deployments affords opportunities to reduce anthropogenic climate

forcing. It also raises challenges in terms of how to optimally locate wind turbines

offshore at the scale required to achieve electricity-generation goals. This article

provides timely and critical information to guide both U.S. and global offshore

wind-energy deployments.

Estimated technically feasible potential electricity generation fromU.S. offshore wind re-

sources exceeds 7,000 Terra-Watt hours per year (TWh/year).7 This surpasses current

total national electricity generation of �4,000 TWh/year.8 As of May 2021, the U.S.
Joule 5, 2663–2686, October 20, 2021 ª 2021 Elsevier Inc. 2663



Figure 1. Overview of the simulations with the Weather Research and Forecasting (WRF) model

and the locations of offshore wind-farm lease areas (LAs) along the U.S. east coast

(A) The outer WRF simulation domain (d01) has a grid resolution of 16.67 km. The second domain

(d02) has a grid resolution of 5.56 km. Two inner domains (d03 and d04) comprise 340 3 361 grid

cells and use a grid resolution of 1.85 km. The 15 offshore lease areas analyzed herein are shown by

the magenta shading.

(B) The inner-most domain (d03 and d04) showing the lease area (LA) clusters.

(C) Proximity of the offshore lease areas to major demand centers as illustrated by the population

density per km2 according to the 2010 census (https://www.census.gov/data/tables/time-series/

demo/popest/2010s-state-total.html) and the location of the 15 offshore lease areas (magenta).

(D) Mean height of the lowest 20 wind-speed levels computed for all water grid cells within d03.

(E) Wind turbine power and thrust coefficients as a function of wind speed (WS) for the IEA 15-MW

reference turbine used in this analysis. This wind turbine has a HH of 150 m and rotor diameter of

240 m.12 Power production begins at 4 ms�1 and ceases at WSs > 25 ms�1, thus no power

production or thrust coefficients are plotted for WSs outside of the range of 4–25 ms�1.

1Department of Earth and Atmospheric Sciences,
Cornell University, Ithaca, NY 14853, USA

2Sibley School of Mechanical and Aerospace
Engineering, Cornell University, Ithaca, NY 14853,
USA

3Lead contact

*Correspondence: @cornell.edu

https://doi.org/10.1016/j.joule.2021.09.002

ll
Article
had one 30-MW offshore wind farm operating at Block Island, Rhode Island, and two

research turbines in Virginia.9 However, the current total U.S. offshore wind pipeline

(to 2030) is over 26 GW, much of which is focused on 16 lease areas (LAs) along the

east coast10 (Figures 1A and 1B). Realizing this pipeline would increase current U.S.

wind turbine installed capacity (IC) by over 20% and almost double total global offshore

installed capacity, which was 28 GW at the end of 2019.11

Expansion of the U.S. offshore wind industry represents a substantial financial invest-

ment. Data from Germany indicate the total installed project cost for offshore wind

turbines of US$ 1,910 per kilo-Watt (kW) during 2019.13 Projections for fixed bottom

offshore wind turbines in the U.S. made in 2019 indicate total capital expenditure of

US$ 4,077 per kW.14 Using these cost estimates, installation of 26–29 GW in the 16

LAs off the U.S. east coast, equates to a direct investment of �US$ 50 to 120 billion.

The global trend toward increased deployment of wind turbines offshore is associ-

ated with declining levelized cost of energy (LCoE), and offshore projects in the

mature markets of Germany and the Netherlands are now subsidy free.13 The
2664 Joule 5, 2663–2686, October 20, 2021

https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html


ll
Article
transition to offshore deployments is driven by multiple factors. First, wind speeds

are generally higher and more persistent than over land surfaces, leading to higher

efficiency of electrical-power production.11 The variation of electrical-power pro-

duction from wind turbines with wind speed is described using a power curve (Fig-

ure 1E). Power production increases as wind speeds increase from cut-in when power

production begins (commonly about 4 ms�1) to a threshold at which the power pro-

duction reaches the rated power and no longer continues to increase with increasing

wind speed. This rated power thus describes the amount of electrical power in watts

(i.e., joules per second) a wind turbine generates if it is operating at optimal wind

speeds. Due to factors such as lower surface roughness and the absence of

orographic barriers, wind turbines deployed offshore generally operate more

frequently at rated power than those located onshore. Second, many major urban

areas are located in coastal areas, providing nearby load centers for the electricity

generated by offshore wind farms. For example, the Boston-Washington corridor,

encompassing New York City, has a population over 50 million and is located close

to the U.S. east coast offshore LAs (Figure 1C).

A major source of uncertainty in designing offshore wind turbine arrays (wind farms) and

optimal spacing between wind farms derives from power-production losses15,16 and

enhanced fatigue loading17 caused by operation of a wind turbine or wind farm in the

wake of an upstream wind turbine or wind farm.18 Wakes are flow regions behind

wind turbines and wind farms that are characterized by lower wind speeds and higher

turbulence levels and are caused by the extraction of momentum by wind turbines.

The magnitude of these wakes and the downstream distance necessary for them to

be eroded by mixing with surrounding high-momentum air is primarily determined

by: (1) wind speed across the wind turbine rotor. This determines the efficiency of

momentum extraction. The wind turbine thrust coefficient describes the magnitude of

the wind-speed reduction and amount of turbulence introduced by the rotor as a

nonlinear function of the incidentwind speed (Figure 1E).15 (2) Turbulence frommechan-

ical and thermal sources. The turbulence intensity and the depth of the planetary bound-

ary layer dictate the rate at which kinetic energy can be transferred down the velocity

gradient into the wind turbine wake. For a given wind turbine or wind farm, as shown

herein, these three atmospheric variables; wind speed, turbulence intensity, and bound-

ary layer depth are largely responsible for dictating the downwinddistance necessary for

the flow to return to its undisturbed condition, i.e., for the wake to recover.15,16,19 The

rate at which kinetic energy can be transferred in the atmosphere limits the amount of

energy that can be extracted by wind turbines per unit of surface area.20–22 Low transfer

rates can reduce power production from wind turbines in the interior of large offshore

wind farms to approximately 60% of what would be achievable if all wind turbines expe-

rienced undisturbed air flow.15,16 Low turbulence and planetary boundary layer depths

offshore also mean that cumulative wind-farm wakes persist over longer downwind dis-

tances23,24 and that wake-induced power loss within wind farms are also larger than in

onshore wind farms.15,16 (3) Wind turbine spacing: closer spacing means more wind tur-

bines operate in the wake of upstream turbines and thus experience lower wind speeds

and generate less electrical power. For example, the Horns Rev I offshore wind farm in

Denmark has an IC of 166 MW, a turbine spacing of 73 7 rotor diameters (D) and mean

reduction in power production due to wakes from upstream turbines impinging on

downstreamwind turbines (wake losses) of 12.4%.25 Conversely, Lillgrund, in the coastal

waters of Sweden, which has a similar IC (of 110 MW) but uses a smaller distance be-

tween wind turbines (a spacing of 3.3 to 4.3 D), exhibits wake losses of 23%.25 (4)

Wind direction: wind direction determines the likelihood that wind turbine wakes within

an array interact with each other and whether the wake from one wind turbine array will

be advected over another.23,26
Joule 5, 2663–2686, October 20, 2021 2665
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The number of global offshore wind farms, the size and rated capacity of the wind

turbines, and the total IC within individual arrays are increasing. For example, the

mean IC of European offshore wind farms doubled from 321 to 621 MW between

2010 and 2019.27 The largest operating offshore wind array is Hornsea Project

One. It has a total IC of 1.2 GW over a deployment area of 630 km2.28 Despite the

growth in installed capacities, the most recently built European offshore wind farms

continued to employ wind turbine spacing of 4 to 11 rotor diameters (D) with a mean

of 7.7D.29 Offshore wind farms operating in Europe have installed capacity densities

(ICDs), i.e., the rated power of the installed wind turbines per square kilometer of

ground area) of 2.5 to 12 MWkm�2.30 An additional analysis of data from offshore

wind farms in Europe indicates mean ICDs of 3 to 7.2 MWkm�2, depending on the

definition of wind farm areal extent.31 There has also been a pronounced trend to-

ward deployment of physically larger and higher-rated power wind turbines.32 These

industry trends are causing an increased probability of large wake losses within indi-

vidual wind farms and an increased probability of wake interactions between

offshore wind-turbine arrays.33,34 Further, a recent meta-analysis identified wake-

induced power losses as the primary source of uncertainty in preconstruction esti-

mates of annual energy production from wind turbine arrays and a major contributor

to excess project financing costs.35 Improved understanding of wind turbine and

wind-farm wakes is thus essential to ensuring the planned global investments in

offshore wind achieve the electricity-generation goals and do so at the lowest

possible cost.

The objective of this work is to characterize power production, wind-farm wake in-

tensity and extent, and wake-induced power losses from planned very large offshore

wind farms. This work is focused onmuch larger offshore wind turbine arrays than are

currently operational but have a scale equal to those that are anticipated to be

developed in the U.S., Europe, and China. It thus extends the literature that has pre-

viously focused primarily on smaller wind turbine arrays or has considered the limit

case of nearly infinite wind farms. This work also includes an analysis of the sensitivity

of power production and wake effects to both wind-farm ICD and meteorology for a

wide range of atmospheric conditions that prevail offshore. Two methodological in-

novations are presented. A flow-scenario method is introduced to efficiently

develop robust assessments of power production, wake extent and intensity, and

wake-induced power losses. The concept of the normalized wake extent is also intro-

duced and statistical models of this property as a function of prevailing meteorology

are developed. The numerical simulations are performed for the existing offshore

LAs along the U.S. east coast but the study findings have relevance to the global

offshore wind-energy industry.

Offshore wind LAs along the U.S. east coast

LAs for possible offshore wind development in the U.S. are auctioned and managed by

theBureauofOcean EnergyManagement (BOEM). The 15offshore LAs consideredhere

lie along the coasts of the Northeast and Atlantic U.S. states (Figures 1A and 1B10). Each

has a unique alpha-numeric identifier; OCS-A-NNNN, where NNNN is unique to the

LAs. LAs 1–7 are treated as a LA cluster herein. All seven lie within a coherent area along

the coast of Massachusetts and Rhode Island and collectively cover 3,675 km2. These

includeOCS-A 0487, 0500, 0501, 0520, 0521, 0522 (listedwest to east) that are adjacent

to one another, while OCS-A 0486 is separated from 0487 by a channel that is 2.4 km

wide. LA 8 (0512) is located off the coast of New York state and covers an area of

321 km2. LAs 9–13 cover a total area of 2,105 km2. Two of these LAs are adjacent and

are offshore from New Jersey (OCS-A 0499 and 0498). They are 23 km north of two

LAs east of Delaware (OCS-A 0482 and 0519), that are 11 km north and east of the
2666 Joule 5, 2663–2686, October 20, 2021
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sole Maryland LA (OCS-A 0490). These five LAs are not all adjacent but are treated as a

cluster here because, as shownherein, under certain flow conditions thewake from these

LAs exhibit substantial overlap. LAs 14 and 15 (OCS-A 0483 and 0497) are adjacent,

cover an area of 465 km2 and are located off the coast of Virginia. The final LA, OCS-

A 0508, lies further south off the coast of North Carolina. It is not included in the inner-

most simulation domain and is thus excluded from consideration in this analysis.

The total extent of the LAs considered here is 6,566 km2. This, and the spatial scale of

the individual and contiguous offshore LAs along the U.S. east coast, greatly ex-

ceeds that of current European offshore wind farms. However, they are representa-

tive of the scale of future wind turbine deployments needed to meet the expressed

goals of the United Kingdom, the European Union, the United States of America, and

China. Quantifying power losses due to wakes as a function of atmospheric condi-

tions (e.g., wind speed, planetary boundary layer height, and ambient turbulent

kinetic energy) and ICD will inform wind turbine array layouts, and aid power-pro-

duction forecasting and grid-integration planning in both the U.S. and beyond.

The close proximity of these current LAs (Figures 1A and 1B) and prospective future

LA offerings along the U.S. east coast36 and the planned expansion of wind turbine

deployments in the North Sea6 further emphasize the need to quantify possible

array-array interactions, particularly as adjacent LAs are owned and operated by

different companies or consortia.

Simulations with theWeather Research and Forecasting (WRF) model are performed

using nested domains resolved with high horizontal and vertical resolution (Figures

1A, 1B, and 1D). The modified Fitch wind-farm parameterization is used to quantify

power production and wakes.37,38 Wind-farm parameterizations such as Fitch seek

to treat the bulk aerodynamic effects caused by wind turbines within and downwind

of the grid cell(s) in which they are located. An estimate of the power produced by

the wind turbine(s) in each grid cell and model time step is computed from the

wind turbine power curve (Figure 1E) and the grid-cell-averaged incident wind-

speed profile across the rotor plane. The wind turbine(s) within a given grid cell

impose a drag force across the rotor plane that is determined by the wind turbine

thrust coefficient (Figure 1E) and the incident wind-speed profile. This drag force re-

moves kinetic energy from the flow resulting in a modified wind-speed profile that is

advected to adjacent grid cells. Turbulent kinetic energy is added to the flow at a

rate proportional to the fraction of kinetic energy extracted by the wind turbine

and not converted into electrical power. It too is advected into adjacent grid cells.

The wind-farm parameterization thus requires information regarding wind turbine

physical dimensions, along with power and thrust coefficients that are often held

confidential by wind turbine manufacturers. Therefore, the International Energy

Agency (IEA) reference turbine12 is employed, having a similar hub height (HH)

and rotor diameter (D) to the G.E. Haliade-X 13-MW wind turbine (HH � 140 m, D

� 220 m) that has been selected for LA 1.

The methodology used to efficiently generate a robust assessment of likely power

production and wake losses from the U.S. east coast LAs is derived from earlier

work on wind-resource assessment.39 We identify dominant modes of relevant

atmospheric flow conditions and then perform simulations for real 5-day periods

that reflect those flow scenarios (Figure 2). The results from these simulations are

weighted by the frequency with which each flow scenario occurs to derive climato-

logically representative power-production and wake statistics. The flow scenarios

are abbreviated using the following nomenclature: WDWS (where WD is the wind

direction and WS is the wind speed e.g., NE4-10 for northeasterly flow in the
Joule 5, 2663–2686, October 20, 2021 2667



Figure 2. Overview of hourly wind speeds and directions at 100 m height in lease area 8 and the

aggregation approach used to define the flow scenarios and characterize their frequency and

seasonality

(A) Wind rose of all ERA5 hourly observations from 1979–2018 for the grid cell containing lease area

8 (Figures 1A and 1B) wherein the wind speeds (WSs) are discretized into 3 ms�1 classes for all

values above 4 ms�1, and wind directions (WDs) are discretized into 10� classes.
(B) As in (A) but using 30� wind direction sectors.

(C) As in (A) but for WSs in 6 ms�1 classes.

(D) As in (A) but using 90� wind direction sectors.

In each (A–D), the radial axis denotes the percentage of hours with wind speeds between 4 and

25 ms�1 that fall into the specified flow class. The ten most frequently observed combinations of

wind direction and speed (denoted by WDWS) are (in rank order); SW4-10, SW10-16, NW4-10,

NW4-10, NE4-10, SE4-10, NE10-16, SE10-16, SW16-25 and NW16-25.

(E) Frequency of the flow scenarios by calendar month as a percentage of hours in each month. The

flow scenarios are ordered by frequency with the most frequent at the bottom. Red shading

denotes northwesterly (NW) flow, blue for southwesterly (SW), black for northeasterly (NE), and

yellow for southeasterly (SE) flow. Crosshatching indicates wind speeds (WS) of 4 to 10 ms�1,

vertical lines denote WS between 10 and 16 ms�1, and the solid shading indicates WS between 16

and 25 ms�1.
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Figure 3. Illustration of the three wind-turbine deployment layouts for the lease areas 1–7 cluster

(see location in Figure 1)

The black squares denote the placement of wind turbines within this cluster of lease areas in the

control deployment layout with wind turbine separation of 1.85 km (for a mean installed capacity

density of 4.34 MWkm�2). The yellow circles denote placement of wind turbines in this cluster of

lease areas in the maritime-corridor deployment layout (i.e., where the sixth north-south row of

wind turbines from the control are removed). The red squares denote placement of wind turbines in

this cluster of lease areas in the half-density deployment layout.
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wind-speed class 4–10 ms�1). The simulation periods are referred to here use the

date; YYYY-MM-DD (i.e., year-month-day) of the first day of each 5-day period.

Simulations are performed for three different wind turbine layouts and ICD (Figure 3):

(1) a control layout using the average wind turbine spacing from Europe (i.e., 7.7

wind- urbine rotor diameters), whichmeans that the distance between each wind tur-

bine is 1.85 km. This spacing has been selected for LAs 1 through 7. It yields a total IC

of 28.8 GW from 1922 wind turbines of 15 MW each. For this wind turbine layout the

mean ICD across the four clusters of LAs is 4.34 MWkm�2. (2) A maritime-corridor

layout where the sixth north-south ‘‘column’’ of wind turbines in each LA is removed.

This reduces the total IC to 24.1 GW. (3) A half-density layout for a total installed of

14.5 GW. The ICD for this layout (�2.1 MWkm�2) is at the lower end of current

offshore wind farms in Europe.

The distribution of wind turbines between the LA clusters are as follows. In the con-

trol simulations there are 1,073 wind turbines deployed in LAs 1 through 7, 89 in LA

8, 624 in LAs 9 through 13, and 136 in LAs 14 and 15. When the maritime corridors

are introduced, the total number of wind turbines in each LA cluster drops to 900, 74,

521, and 109, respectively. In the half-density layout the wind turbines are separated

by �2.8 km, and the equivalent wind turbine numbers deployed in each LA cluster

are, respectively, 532, 47, 318, and 71.

Output from each of the eleven, 5-day simulations of the control layout is weighted

using the relative frequency of the flow conditions it represents to derive robust es-

timates of expected power production and a wake climatology from the U.S. east

coast LAs. The same analysis is performed for simulations of the other wind-farm lay-

outs. Model output for the control and half-density wind-farm layouts are also used

to develop first-order scaling rules that describe how the area influenced by wakes
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from an offshore wind farm depends on the prevailing atmospheric conditions and

the density of wind turbines within the wind farm.
RESULTS

Estimated power production from the U.S. offshore LAs

After applying frequency weighting to output from the 5-day simulations of each of

the 11 flow scenarios, the expected electric-power production for the control layout

is 116 TWh/year or 3% of current national supply. Electric-power production from

wind turbines is summarized using capacity factors (CFs) computed as the ratio of

the amount of power produced normalized by the potential power produced if all

wind turbines run at their rated capacity (in this case, 15 MW). The mean CF for

the control layout, where the wind turbines are spaced at the mean value from oper-

ating offshore wind farms in Europe, is 45.8% (Table 1). Power losses due to trans-

mission, curtailment for grid operation, and operations and maintenance actions

for onshore wind farms decrease CFs in the U.S. by an average of 4 percentage

points.40 Assuming that this estimate is also appropriate for offshore wind turbine

arrays, the resulting estimated net-CF for these U.S. east coast offshore LAs is

�42%. This is comparable with, or better than, values reported for European (38%

during 201941 and 40.8% cited in a meta-analysis31) and global (40% to 42%11)

offshore wind farms. Thus, this modeling suggests that if the U.S. LAs are developed

using wind turbines similar to the IEA 15-MW reference wind turbine laid out at a

spacing equal to the mean in European offshore wind farms, they would operate

with the same, or higher, CFs than those in smaller offshore wind farms in Europe

that have been shown to be highly viable economically.

There is substantial variability in power production across the flow scenarios with, as

expected, higher freestream wind speeds being associated with higher CFs (Fig-

ure 4A; Table 1). The higher CFs for the northern LAs (LA cluster 1–7 and LAs 8; Fig-

ures 4A and 5A) are due to: (1) higher wind speeds and thus better wind resources

(Figure 5B) and (2) smaller wake losses in the smallest contiguous LA of wind turbine

deployments (lease area 8, LA8) (Figures 4B and 5A). The south-north gradient of

increasing wind-resource magnitude implied in the 11 simulations of the individual

flow scenarios is consistent with wind-resource estimations from long-term reanaly-

ses,10 mesoscale simulations, and satellite-derived wind climates.42 The most

northern and largest cluster of LAs (1 through 7; see Figure 1B) exhibit a fre-

quency-weighted mean CF of 46%, while in LA 8 it is 56%, in lease areas 9–13 it is

45% and lease areas 14 and 15 have a mean CF of 40% (Table 1; Figures 4B and 5).

Each of the LA clusters exhibits different CFs for the diverse flow scenarios due in

part to variations in wind direction, and hence the over-water fetch and the resulting

levels of turbulent kinetic energy (TKE) and wind speeds at the wind turbine HH (Fig-

ure 4C). For example, LAs 14 and 15 exhibit the highest mean CFs for the northeast-

erly flow scenarios (NE10-16 and NE4-10, represented by simulation periods that

commence on 1985-11-28 and 2012-11-17) and lowest mean CFs for flow directions

that are from land (NW4-10 and SW4-10, represented by simulation periods that

commence on 1988-07-04 and 1998-06-04) (Figure 4B).

Two sets of sensitivity simulations for different wind turbine layouts are performed

for a subset of atmospheric flow conditions. Implementation of maritime corridors

reduces overall power production due to the decrease in the number of wind

turbines (from 1,922 to 1,604) but increases mean CFs by 2 percentage points due

to the reduction in wake losses (Figure 4A; Table 1). Reducing the wind turbine
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Table 1. Summary of the flow scenarios and simulation results

Flow scenario
Start date
of 5 day

ERA5: lease area 8 centroid Control Corridor Half

% of
obs.

100-m WS class
(ms�1)

100-m wind
direction class (�)

# of hours out
of 120 in class

Mean
CF (%)

Mean wake
loss (%)

Area of d04
with <vd>
of 2% (%)

Area of d04
with <vd>
of 5% (%)

Area of d04
with <vd>
of 10% (%)

Mean
CF (%)

Mean wake
loss (%)

Mean
CF (%)

Mean wake
loss (%)

NW4-10 1979-10-26 7.85 4–10 270–360 66 26.7 34.4 4.1 2.3 1.3 28.3 30.5 32.1 21.2

SW16-25 1981-04-04 1.6 16–25 180–270 43 76.0 13.5 7.7 3.7 1.7 – – – –

SE4-10 1981-08-29 7.5 4–10 90–180 78 22.9 65.5 8.8 5.6 3.8 – – – –

NE10-16 1985-11-28 4.6 10–16 0–90 64 73.6 17.5 7.6 3.3 1.6 – – – –

SW10-16 1986-03-26 9.1 10–16 180–270 69 53.0 31.1 12.3 6.2 3.6 56.2 27.0 63.4 17.4

SW4-10 1988-07-04 12.5 4–10 180–270 84 9.0 64.7 14.1 4.7 2.7 10.1 60.3 13.6 47.0

NW4-10 1998-06-04 7.85 4–10 270–360 78 42.8 34.6 5.6 3.4 2.2 – – – –

NW16-25 2000-01-17 1.4 16–25 270–360 32 60.7 6.8 3.6 1.6 0.2 – – – –

NW10-16 2007-02-05 11 10–16 270–360 84 88.7 4.2 2.8 1.4 0.3 89.6 3.3 91.0 1.7

SE10-16 2011-05-15 2.3 10–16 90–180 37 63.3 20.7 7.7 5.0 2.9 – – – –

NE4-10 2012-11-17 9.6 4–10 0–90 90 49.1 34.4 10.3 3.9 2.0 52.0 30.5 59.9 20.1

Frequency-weighted means. Two values are given for the control. 45.8a

45b
35.3a 34.7b – – – 46.9 31.3 51.4 22.5

Columns on the left define the flow scenarios and the 11 5-day periods used to represent each scenario (by start date). Subsequent columns show the flow-scenario frequency based on ERA5 WS and wind

direction at 100 m from the grid cell containing lease area 8 (LA8), along with the number of hours in the 5-day period that fall within the flow class. Results of the WRF simulations are shown for three different

wind-turbine layouts: control in which the lease areas are fully occupied by wind turbines deployed with a 1.85 km spacing. Corridor where every sixth north-south row of wind turbines is omitted. Half (for half-

installed capacity density) where the wind-turbine spacing is increased to 2.6 km (see details in Figure 3). The mean CF shown is derived from 10-min power production output from wind turbines in all lease

areas. Mean wake losses are computed using the power production from the wind-farm parameterization and the maximum power possible if all wind turbines experienced the freestreamWS. For the control

layout the percentage of the grid cells in the innermost domain that exhibits amean velocity deficit (vd) of 2, 5, and 10% is also shown. Slightly over 1.5% of simulation domain d04 grid cells contain wind turbines

in the control simulations.
aFrequency weighting across all flow scenarios.
bFrequency weighting of only flow scenarios also used in Corridor and half simulations.
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Figure 4. Capacity factors (CFs, in %) and wake extents for each of the 5-day periods that

represent the 11 flow scenarios

(A) Mean, median (p50), and interquartile range (p25–75) of 10-min systemwide CFs (i.e., all lease

areas) for each flow scenario in the control simulations (black). Also shown are mean capacity

factors for simulations of wind turbine layouts including maritime corridors (blue stars) and half

wind turbine density (red diamonds). Labels on the bottom axis indicate the flow scenario and start

date of each 5-day simulation period.

(B) A heatmap ofmean capacity factors (CFs, in%) in each lease-area (LA) cluster for each flow scenario from

the control simulations. Note: two cases are simulated for the most common flow scenario; northwesterly

flow with WSs from 4 to 10 ms�1 (NW4-10), one in fall and one in summer (denoted by the r). The first lease

area cluster (LA1–7) is located south ofMassachusetts. Lease area 8 (LA8) is located off the coast of NewYork

state. Lease areas 9–13 (LA9-13) are locatedoffshore ofNew Jersey,Delaware, andMaryland. Lease areas 14

and 15 (LA14&15) are located off the coast of Virginia (Figures 1A and 1B).

(C) Normalized wake extent (NWE) calculated as the area covered by a mean velocity deficits of over

5% (vd % �0.05) divided by the spatial extent of the lease-area cluster that generates the wake

using Equation 6) for the control simulations plotted as a function of the mean freestream wind

speed (WS) and turbulent kinetic energy (TKE) at 150 m in height over each lease-area cluster. There

are 11 simulations and 4 lease-area clusters, thus 44 data points are plotted. The symbol size and

color denote the normalized wake extent (NWE), and the marker in each NWE estimate denotes the

lease-area cluster for which it is derived.

(D) (Inset to C) Difference in NWE (DNWE, Equation 7) plotted as a function of the mean freestream

WS and TKE at 150 m over each lease-area cluster. Symbol size scales with the magnitude of DNWE

between the control layout and half-density simulations (range 0.15–0.95), while the color denotes

normalized wake extent (NWE) in the control simulations.
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installed density to half of that used in the control simulations (968 wind turbines)

further reduces power production but again increases mean CFs (Figure 4A; Table

1). Frequency-weighted mean CFs based on this subset of five flow scenarios in-

creases from 45% in the control, to 46.9% in the corridor layout, and to 51.4% in

the half-density layout (Table 1). This demonstrates the highly nonlinear depen-

dence of power production and wake losses on atmospheric conditions and wind

turbine spacing. Simulations such as those presented herein, which consider

different wind turbine layouts, have high value in guiding development of large

offshore wind farms in spatially limited LAs, particularly when they address other

stakeholder interests (e.g., corridors to enable fishing and shipping) and can

contribute to life-cycle financial analyses.44
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Figure 5. Capacity factors and wind speed probability distributions for the U.S. east coast lease

area clusters

(A) Mean capacity factor (CFs in %) versus installed capacity density (ICD in MWkm�2) for varying

wind turbine deployment layouts and across the four lease-area (LA) clusters. The symbol diameter

in (A) scales with the area over which the wind turbines are deployed (see legend, upper right).

Results from this study are shown accumulated over all four lease-area clusters (cyan) for the three

wind-turbine deployments—control, maritime corridors, and half-installed capacity density—

(ICD), and for each the four lease-area (LA) clusters (colors as in B) from the control deployment

(ICD � 4.34 MWkm�2) with the numbers indicating the lease-area clusters (LAs 1–7, 8, 9–13, and 14

and 15) (see Figures 1A and 1B). Also shown are results of a study for projected developments in the

German Bight area of the North Sea from the Agora study.6 Both analyses are based on simulations

with the Weather Research and Forecasting (WRF) model, but use different wind-farm

parameterizations; Fitch37,38 is shown here and the Explicit Wake Parameterization (EWP)43 in the

Agora study. Results from the Agora study are shown for 12-MW wind turbines deployed at an

installed capacity density (ICD) of 5 MWkm�2 over an area of 2,767 km2, with an installed capacity

(IC) of 13.8 GW, and in two large arrays covering areas of 2,767 km2 and 4,473 km2 (total IC of 36.2

GW), and for those two deployment areas at ICD of 7.5 MWkm�2 (total IC of 54.3 GW) and of 10

MWkm�2 (total IC of 72.4 GW).

(B) Probability distributions from a two-parameter Weibull fit to modeled freestream wind speeds

(WSs) at a height of 153 m a.s.l. in the center of each lease-area (LA) cluster. The numbers in the

legend in (B) indicate the Weibull A and Weibull k parameters derived using maximum likelihood

estimation and Equation 3.
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Estimated wake intensity and spatial extent

Despite the relatively high CFs that measure the actual energy output relative to the

maximum possible, these model simulations also indicate substantial loss of

potential power production due to the impingement of wakes on downstream

wind turbines within individual LAs and between LAs (Figure 6). Individual LAs,

and not only those that are immediately adjacent, are projected to be frequently

operating in the ‘‘wind shadow’’ of upstream wind farms (Figure 6). This not only

reduces power production but will be associated with increased mechanical loading

on the wind turbines.

Frequency-weighted wake-induced power losses averaged over all LAs are 35.3%

(Table 1). Thus, over a third of potential electrical-power production that could be

achieved if all wind turbines operated in freestream (undisturbed) flow is lost due
Joule 5, 2663–2686, October 20, 2021 2673



Figure 6. Mean velocity deficit (vd) in each grid cell for each of the 5-day flow-scenario simulations (Table 1)

(A–K) The title of each panel denotes the flow scenario (the first two letters denote the wind direction and the digits indicate the WS class) and first day of

each 5-day simulation period (date is written as year-month-day). The mean velocity deficit is the mean normalized difference in WS in each grid cell at

each time step (i) in output from simulation domain d04 (operating wind turbines) to output from simulation domain d03 (no wind turbines) (see

Equation 4). The overlying quivers are the meanWS and direction computed using output from the simulation domain d03 that describes the freestream

conditions. For legibility, the quivers are plotted at the 12th grid cell in both the latitude and longitude positions and are scaled to prevent overlap. The

maximum length of each quiver in each panel is set to the maximum mean WS plot for each case (shown in the upper right of the panel and expressed

in ms�1).

(L) Composite of all grid cells that have a mean velocity deficit of 5% or more (vd % �0.05) in one or more of the flow cases (cyan) and the location of grid

cells containing wind turbines (magenta).

ll
Article
to their operation within wakes from upstream wind turbines and wind farms. This

value greatly exceeds wake losses from current European offshore wind farms25 in

part because of the very large extent of the wind-farm clusters and unprecedented

number of wind turbines deployed.

Velocity deficits (vd) are used here as a metric of wake intensity and extent. They

represent the reduction in wind speed relative to what would be observed if no up-

stream wind turbines are present. These velocity deficits are calculated using wind

speeds at the wind turbine HH from simulation domain d04 output with the action

of wind turbines included (WSWT) and output from simulation domain d03 where

no wind turbines are included (WSNoWT) (see methods). The concept of the normal-

ized wake extent (NWE) is introduced to describe the areal extent of disturbed flow

caused by a given wind farm. It is the ratio of the spatial extent of the wind shadow

generated by a wind farm to the area of the wind farm. The NWE is naturally a
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function of the threshold of velocity deficit used to define the wake. The area

covered by mean velocity deficits of 2% (i.e., vd % �0.02, Equation 4) for the 11

flow scenarios with the control layout ranges from 2.8% to 14.1% of the innermost

model domain where wind turbines are operating (d04), while the area covered by

wind turbines is 1.5% (Table 1). Thus, the mean NWE using this velocity deficit

threshold varies depending on the prevailing atmospheric conditions but is between

two times and nearly ten times the spatial extent of the wind farms. Similar mean

NWEs computed for the different flow scenarios using a velocity deficit (vd) of 5%

range from one to four, with a weighted mean of 2.6. Using a velocity deficit (vd)

of 10% to define the area covered by a wake, themeanNWE in each 5-day simulation

ranges from 0.15 to nearly three (Table 1). These values indicate that, consistent with

expectations, wind turbine deployments within these LAs will generate substantial

downstream ‘‘wind shadows’’ (Figure 6). As discussed further below, large, NWEs

are associated with simulations of flow conditions characterized by moderate wind

speeds, low ambient turbulence, and low planetary boundary layer depths.

The NWE is substantially smaller in the half-density simulations for all LA clusters and

all values of freestream wind speed, planetary boundary layer height, and TKE (Fig-

ure 7). The mean difference in normalized spatial wake extents in the control and

half-density simulations (DNWE, computed using Equation 7) is 0.48. Thus, the

area covered by mean velocity deficit of at least 5% reduces to half the value from

the control simulations when a half-density wind turbine layout is simulated. Thus,

on average, there is a systemwide benefit from minimizing wind shadows from

upstream LAs by locating wind turbines with greater spacing. However, the range

of DNWE extends from 0.12 to 0.96, indicating that under some atmospheric flow

conditions the NWE is only modestly influenced by the density of wind turbine

deployments in the LAs. The difference in NWE in the half-density simulations rela-

tive to the control is maximized for periods with high ambient turbulence (Figure 4D).

Thus, the decrease in wake extent due to the reduction in ICD is disproportionately

weighted toward periods with relatively small, NWEs in the control simulations. The

BOEM intends to auction additional LAs close to these existing LAs. While adoption

of lower ICD will reduce revenues to individual LA operators, it may have benefits in

terms of reducing systemwide power losses and wind turbine fatigue loading due to

wakes within wind farms and between wind farms.

An alternative metric of the wind-farm wake extent is the maximum distance

downwind from LA clusters aligned with the mean wind direction to which a

mean velocity deficit of at least 5% (vd % �0.05) extends (Figure 6L). For the con-

trol simulations, the minimum downwind wake extent from the largest LA cluster

(LAs 1–7) is 14 km. It is associated with northwesterly flow scenarios (represented

by simulations commencing on 1979-10-26 and 2007-02-05) (Figure 6A–6K). These

simulations exhibit flow from over land to this LA cluster with relatively low free-

stream wind speeds (5–8 ms�1 at the center of these LAs at �150 m in height)

and moderate freestream TKE of �1 m2s�2. The maximum wake extent from the

LAs 1–7 of 90 km is found for the SW10-16 flow scenario (the simulation starting

on 1986-03-26) and the NE4-10 flow scenario (represented by the simulation

that starts on 2012-11-17) (Figure 6). The SW10-16 case exhibits higher wind

speeds (freestream wind speed at �150 m at the center of the LA cluster of

�10 ms�1) but has a long over-water fetch, which results in low freestream

TKE < 0.07 m2s�2 that contributes to slow wake recovery and large wake-propaga-

tion distances. By contrast, the NE4-10 case exhibits higher TKE < 0.4 m2s�2, but

lower wind speeds (WSs �7.8 ms�1) and higher thrust coefficients, which also lead

to larger wake extents. For cases with southerly, southwesterly mean flow, i.e.,
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Figure 7. Spatial extent of disturbed flow (wakes) from offshore wind farms shown as a function

of prevailing meteorology

(A and C) 3D bubble plots of the normalized wake extent (NWE, for a velocity deficit threshold 5%,

i.e., vd < �0.05) from each of the four lease-area clusters as a function of freestream wind speed

(WS) and turbulent kinetic energy (TKE, shown in log10 scale) close to the wind-turbine HH of 150 m,

and the freestream planetary boundary layer height (PBLH) in the centroid of the lease-area cluster.

(A) Results from the simulations of the control layouts, where wind turbines are installed with the

mean separation of 7.7 times the wind-turbine rotor diameter. The installed capacity density for

these control simulations is approximately 4.34 MWkm�2.

(C) Results from the simulations of the half-density layouts, where the density of wind turbines is reduced to

half that used in the control layout and represents the lowest densities used in European offshore wind

farms. The associated installed capacity density is �2.2 MWkm�2.

(B and D) Scatterplots of the normalized wake extent (NWE) for each combined WS, PBLH, and TKE class

derived directly from the WRF-Fitch output versus those predicted from the regression models.

(B) Results for an installed capacity density of 4.34 MWkm�2 (i.e., the control simulations) where the

regression model has the form,NWE = 3:52� 0:0933WS� 0:733 log10ðTKEÞ� 6:3 3 10�4 3 PBLH.

(D) Results for an installed capacity density of �2.2 MWkm�2 (i.e., the half-density simulations)

where the regression model has the form, NWE = 3:00� 0:0563 WS� 0:573 log10ðTKEÞ� 11 3

10�4 3 PBLH.
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SW4-10 (1988-07-04), SW10-16 (1986-03-26), SW16-25 (1981-04-04) or northeast-

erly flow, NE4-10 (2012-11-17), velocity deficits above 5% fully encompass all of

the mid-Atlantic LA clusters (LAs 9–13) indicating substantial array-array interac-

tions, despite separation distances of up to �23 km (Figure 6).

The SW4-10 flow scenario is observed for 12.5% of hours (Table 1) and is associated

with the largest systemwide wake losses, and hence the smallest CFs (Table 1; Fig-

ure 4A). The 5-day simulation period starting 1988-07-04 has a freestream modal

wind direction of �210�, median WS of 6.3 ms�1, and TKE below 0.01 m2s�1 in LA

8. Mean CFs for LAs 1–7 for this flow scenario are particularly small (Figure 4B)

due to low freestream WSs and a clear deep array wake effect. Fewer than 6% of

wind turbines, all of which are located on the edge of the array, exhibit power pro-

duction above 10% of rated power. Mean CFs for LAs 9–13 are also low for this flow

scenario (14%) (Figure 4B), and the contour enclosing mean velocity deficits above

5% (vd % �0.05) over the mid-Atlantic LA cluster for this flow scenario extends
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over a 210-km distance aligned along a south-southwest to north-northeast axis

(Figure 6).

This variability in wake extents and CFs between the flow scenarios emphasizes the

importance of simulating a wide array of atmospheric conditions and affirms the

scenario construction used herein encompasses examples of maximum and

minimum wake intensity and extent (Table 1). The composite overlay of areas with

mean velocity deficits of over 5% (i.e., vd % �0.05) under one or more of the flow

scenarios (Figure 6L) provides important guidance for the selection of future LAs

in order to avoid places with substantial wind shadowing from existing lease areas.

These thorough analyses of the power production and wake behavior across the

different LA clusters along the U.S. east coast and their dependence on wind turbine

layout and prevailing meteorology provides context that is critical to developing a

generalized model for wind-farm wake extents that is presented in the next section.

A generalized model of wind farm wake extent

As illustrated in the previous discussion, the time or distance downstream required

for a wind turbine wake to be eroded due to mixing with surrounding, higher-mo-

mentum air, is determined by the original intensity of the wake and the mixing state

of the atmosphere. The wake intensity is, in large part, dictated by the freestreamWS

and the wind turbine thrust coefficient (Figure 1E). The mixing state of the

atmosphere and ability to transfer higher-momentum air into the wake is determined

by the ambient TKE and the planetary boundary layer height. Accordingly, the mean

normalized spatial extent of wakes from each LA cluster scales primarily according to

both mean freestream TKE andWS at HH (Figure 4C). Large, NWEs are most evident

at low WSs and low TKE (Figure 4C). Conversely, for mean TKE above 0.5 m2s�2, the

NWE is almost uniformly less than twice the area of the LA clusters (Figure 4C). A

weaker but still important third control on wake extent is the planetary boundary

layer height (Figure 7A).

Under the hypothesis that wind-farm intensity, areal extent, and recovery are largely

controlled by three variables—freestream WS, TKE, and planetary boundary layer

height—a generalized model of NWE is derived. The predictand is the NWE, i.e.,

the area covered by a mean velocity deficit [vd] % �0.05). The predictors are

freestream WS, TKE, and planetary boundary layer height (PBLH) for the center of

each LA cluster from the domain in which no wind turbine effects are simulated.

Two models are derived (see details in methods). The first uses model output from

simulations of the control layout that employ a wind turbine spacing equal to that

agreed for some of the LAs and that typifies the European offshore wind energy

industry (ICD of 4.34 MWkm�2). The second model uses output from half-density

layouts where the wind turbines are installed over the same area but with greater

separation leading to an ICD of approximately 2.2 MWkm�2. The NWE model for

the control layouts has the following form:

NWE = 3:52� 0:0933WS � 0:733 log10ðTKEÞ � 6:3310�4 3PBLH (Equation 1)

All of the coefficients are statistically different from zero at a confidence level of 99%

and variance explanation (R2), adjusted for the number of predictors,45 is 0.72

(Figure 7).

The form of this linear model (Equation 1) indicates that the areal extent of the wake

from a large offshore wind farm exhibits a statistically significant negative depen-

dence on freestream WS close to the wind turbine HH, with larger wake generation
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at lower WSs. There is also a negative dependence on the base-10 logarithm of tur-

bulence intensity (log10[TKE]) at wind turbine HH. Weaker ambient turbulence leads

both to slower wake recovery and to larger wake extent. Both findings are consistent

with analyses of operational data from offshore wind farms that have indicated below

average power production, and larger wake effects, under moderate WSs and low

turbulence intensity.15 The model also indicates evidence of a negative dependence

of NWE on freestream PBLH at the center of each LA cluster. For very large wind tur-

bine arrays wake recovery is largely dictated by the rate at which momentum can be

transferred from aloft. Mixing of high-momentum air from the free troposphere

across the temperature inversion that typifies the top of the boundary layer into

the boundary layer is very slow. Thus, under low PBLH the volume of air from which

momentum can be extracted to recover the wake is smaller than under higher PBLH.

Using the half-density layout, the coefficients in the linear model are of the same sign

for each of the predictors:

NWE = 3:00� 0:0563WS � 0:573 log10ðTKEÞ � 113 10�4 3PBLH (Equation 2)

Again, all of the coefficients are statistically different from zero at a confidence level

of 99% and variance explanation (R2), adjusted for the number of predictors,45 is 0.70

(Figure 7).

The high variance explanation for Equations 1 and 2 indicate that these models are

relatively good representations of the model output on which they are based.

Further, there are robust relationships between the areal extent of a wake generated

by very large offshore wind farms and the freestreamWS and TKE near the wind tur-

bine HH and the freestream PBLH. Consistent with expectations, for the same

freestream WS, turbulence intensity, and PBLH the area covered by a wake from

each wind farm is smaller for wind farms that have lower ICD, or greater wind turbine

spacing. For example, for a WS of 7 ms�1, TKE of 0.001 ms�2 and a PBLH of 500 m,

the area covered by a 5% velocity deficit will be an average of 4.74 times the areal

footprint of the wind farm if the wind turbines are installed with a spacing equal to

that of current offshore wind farms in Europe. Conversely, for the half density of

wind turbine deployments, the areal extent of the wind shadow is estimated to be

3.78 the area of the offshore wind farm.

In addition to demonstrating the functional dependence of wake extent on key

meteorological drivers, these equations could provisionally be used with output

from WRF simulations of other global regions to provide first-order estimates of

likely wind shadows from proposed offshore wind farms. Naturally, caution should

be used in extrapolating to atmospheric conditions beyond those sampled in this

analysis and/or to scales of wind deployments dissimilar to those addressed here.

Further, it is important to note that other modeling approaches are available to

describe wind turbine and wind-farm wakes,46,47 and different wind-farm parameter-

izations for use within the WRF model.43 No assessment can currently be made

regarding how results presented herein may differ from those generated using other

modeling frameworks.
DISCUSSION

Expansion of offshore wind is a key component of global efforts to reduce the carbon

intensity of the energy sector. Deeper understanding of the atmospheric physics of

large wind farms is critical to optimal, cost-effective exploitation of the substantial

offshore wind resource. Our research addresses this need and is unique in several
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regards. First, we present a computationally efficient and robust method to derive

representative power production and wake projections for large offshore wind

farms. Second, we demonstrate the approach and the concept of NWEs by applying

our method to offshore wind LAs along that U.S. east coast. Last, we quantify the

sensitivity of power production and wake-induced power losses to both wind-farm

ICD and prevailing meteorology for a wide range of meteorological conditions

that prevail offshore.

Our results indicate that power production of 116 TWh/year andmeanCFs of� 50%can

be achieved from the 15 U.S. east coast offshore wind energy LAs by employing 15-MW

wind turbines at the anticipated spacing of 1.85 km (Table 1; Figure 4). CFs calculated for

all threewind turbine layouts we consideredmeet or exceed those of currently operating

offshore wind farms in Europe. They are consistent with, and indeed slightly higher than,

those from an analogous WRF modeling study for projected installed wind energy ca-

pacity in 2050 for the German Bight region of the North Sea6 (Figure 5). However, for

wind turbine layouts similar to those from smaller offshore wind farms in Europe, a sub-

stantial fraction of these wind turbines will operate in wakes from upstream turbines and

wind farms. Thesewake effects will reducepower productionbyover one-third (Figure 6;

Table 1). There is clear evidence for substantial array-array interactions (i.e., power losses

at downwind wind farms caused by wind turbines operating upwind) even for LAs

separated by 23 km. These results emphasize the critical importance of evaluating

potential wake losses from upstream wind farms as the BOEM moves forward with

tendering additional LAs along the U.S. east coast.36

Using a low estimate of revenues from electricity production of $62 per MWh there

are clear and substantial potential financial benefits from improved array layouts and

careful siting of new wind turbine developments to reduce wake-induced power los-

ses and increase CFs. At this scale of development (28.8 GW), a 1% increase in the

CF would increase electricity output by about 2.5 TWh per year, leading to addi-

tional annual revenues of over US$150 million. Introduction of maritime corridors

in the wind turbine layouts decreases estimated annual electrical-power production

from 116 to 99 TWh/year. Thus, a reduction of total IC by 16.5% yields a reduction in

projected power production of 14.7% because the increase in wind turbine spacing

reduces wake-induced power losses and increases the efficiency of power produc-

tion from the wind turbines. To provide an economic assessment of themaritime cor-

ridors scenario, we assume an installation cost of US$ 3 million per MW (the average

of those projected for the U.S.14 and realized in Germany13) and a power purchase

price of US$ 62 per MWh of electricity produced (the average bid prices for Euro-

pean offshore wind farms13). Excluding any resulting additional cabling costs, intro-

duction of the maritime corridors will decrease initial investment costs by�US$ 14.3

billion but will also lower annual revenues by �US$ 1.06 billion. Thus, the ultimate

system-wide benefits of introducing maritime corridors and/or using higher or lower

ICD merits detailed analyses, including all internal and external costs and benefits.

Projected power production, wake extent, and intensity are a nonlinear function of

prevailing meteorology, e.g., wind resource and turbulence intensity (Figures 4C

and 7), wind turbine layouts, e.g., ICD and areal extent (Figures 5 and 7), and model

assumptions (e.g., wind-farm parameterization).26,48,49 The statistical models devel-

oped here show the extent of wakes from large offshore wind farms can be explained

by three atmospheric variables that are commonly available from meteorological

models and/or can be measured using existing in situ and remote sensing technol-

ogies. The areal extent of disturbed flow normalized to the area of the wind farm that

generates the wake is maximized under conditions of low turbulence intensity,
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moderate WSs, and low boundary layer heights (Figure 7). Thus, offshore wind farms

are most likely to experience lower power production due to the presence of up-

stream wind farms under relatively low WSs and when warmer air moves over a

colder sea. Under these conditions, the lower atmosphere will become stably strat-

ified resulting in low ambient turbulence and low boundary layer heights.

Given the scale of the financial investment and the critical importance of offshore

wind energy to the zero-carbon-emissions economy, further work is warranted.

This should include a diversity of wind turbine layouts, inclusion of alternative

windfarm parameterizations and additional atmospheric flow scenarios to ensure

optimal design of individual offshore wind farms and management of the large-scale

global expansion of offshore wind energy.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information should be directed to the lead contact, Sara C. Pryor

@cornell.edu).

Materials availability

No materials were used in this study.

Data and code availability

Source code for WRF v3.8.1 including the wind-farm parameterization patch is available

from http://www2.mmm.ucar.edu/wrf/users/download/get_sources.html. ERA5 data

are available from https://climate.copernicus.eu/climate-reanalysis. Shapefiles of the

lease areas are available from the BOEM at; https://www.boem.gov/renewable-energy/

mapping-and-data/renewable-energy-gis-data. Thepopulationdensity in the contiguous

U.S. according to the 2010 census is available from; https://www.census.gov/data/tables/

time-series/demo/popest/2010s-state-total.html. Output from the WRF simulations pre-

sented in figures and analyses herein is available for download from ZENODO

(10.5281/zenodo.5137547) access to the full suite of WRF output are available via the

DoE tape archive. Output from simulations of the control layouts is available from:

https://portal.nersc.gov/archive/home/projects/m2645/www/public_data_NY_lease_

fitch_full_density. Output from simulations of the layouts with maritime corridors is avail-

able from: https://portal.nersc.gov/archive/home/projects/m2645/www/public_data_

NY_lease_fitch_recovery_corridors. Output from simulations of the half-density layouts

is available from: https://portal.nersc.gov/archive/home/projects/m2645/www/

public_data_NY_lease_fitch_half_density. MATLAB is a proprietary software pro-

gram developed and available for purchase from MathWorks. MATLAB code used

to perform the analyses is available for download from ZENODO (10.5281/zenodo.

5137547).
Methods

Selecting the flow scenarios

The simulation and analysis framework presented here is designed to optimally quantify

wake impacts on power production while reducing the computational cost and redun-

dancy inherent in long-term continuous simulations. It further avoids limitations associ-

ated with use of idealized flow scenarios or individual case studies. The scenario

approach ensures timely production of actionable information to those responsible for

progressing development of offshore resources at the lowest LCoE. Details of the

computational approach and costs are given in supplemental information.
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The ERA5 reanalysis50 is used to derive representative flow scenarios and the initial and

lateral boundary conditions (LBC) for simulations with theWRFmodel. The ERA5 rean-

alysis model ingests an unprecedented suite of assimilated in situ and remote sensing

observations.50 ERA5 exhibits relatively high fidelity for 100-mwind speeds40,51–53 and

has been used as LBC in a range of WRF-based regional simulations including those

performed for the New EuropeanWind Atlas.54 The periods for whichWRF simulations

are performed are selected based on analyses of WS and direction at 100 m a.g.l. for

1979–2018 from the ERA5 grid cell (303 30 km) containing the center of the New York

LA (LA 8, Figures 1A and 1B). They are selected to represent commonly occurring flow

conditions of relevance to power production and wake generation from wind turbines.

Accordingly, the flow scenarios focus on the following WS classes; 4–10 ms�1 (high

thrust coefficients causing relatively large wake magnitudes, Figure 1E), 10–16 ms�1

(moderate thrust coefficients and wakes) and 16–25 ms�1 (low thrust coefficients

with small wakemagnitude). The wind directions (WD) are also clustered into physically

meaningful groups that represent differentiable modes of over-water fetch to the

offshore LAs (Figure 2). Four directional classes are defined: 270�–360�, 180�–270�,
0�–90� and 90�–180� (listed in decreasing frequency). These directional classes repre-

sent flow that has a relatively short fetch over water to LA 8 (of the order tens rather than

hundreds of km) for the two west sectors (SW: 180–270�, NW: 270–360�) versus those
for the two easterly sectors (NE: 0–90�, SE: 90–180�) with hundreds to thousands of km

of over-water fetch (Figures 1A and 1B). Ten combined WS and direction classes are

required to capture 75% of the total 40 years of hourly observations. The flow scenarios

are described using the nomenclature; WDWS, where WD is NE, SE, SW or NW, and

WS is 4–10, 10–16 or 16–25.

Once the flow scenarios are identified, the 40 year record of hourly ERA5 derived

WSs and directions at 100 m over the center of LA 8 is scanned to identify 5 day

periods with the maximum number of hours that conform to each flow scenario

(Table 1). Variation in atmospheric stability, turbulence intensity and PBLH offshore

is dominated by the seasonal timescale due to the low frequency variability in sea

surface temperatures.55 Thus, in selecting the 5-day periods to represent the flow

scenarios consideration is also given to ensuring the seasonal representation (Fig-

ure 2E). For the most frequent flow scenario (NW4-10), two cases; one in later

autumn and one in summer are selected. Hence, 11 5-day periods are selected for

the WRF model simulations (Table 1).

Simulation settings

Simulations are performed with WRF v3.8.1 and use the Fitch wind-farm parameteriza-

tion.38 This parameterization works such that every wind turbine in a grid cell

contributes to estimated power production (in watts) as a function of the incident

WS and the wind-turbine power curve (Figure 1E). Each wind turbine also induces

wakes by applying a local drag force that reduces WSs and adds TKE to all model ver-

tical levels that intersect the turbine rotor. Drag applied and TKE introduced are func-

tions of the thrust coefficient (Figure 1E) and thus are determined by the incident WS

and wind-turbine specifications.38 Simulations performed here employ a modified

version of the Fitch parameterization corrected for an earlier coding error that pre-

vented advection of wind turbine induced TKE and that employs an updated algorithm

for wind turbine added TKE.37 Key physics setting are as in previous research2 and

shown in supplemental information. Each simulation employs a 6-h spin up and then

runs for 5 days. All variables presented herein are output at 10-min intervals.

Wind resources and wind turbine wake effects are a function of model resolu-

tion.26,48 Power density estimates frommesoscale models with a 10-km grid spacing
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can be 50% lower than those from higher-resolution modeling.48 Here, four simula-

tion domains are employed (Figure 1A). The outer domain comprises 1503 150 grid

cells with a grid resolution of 16.67 km (d01). This is nested down to the middle

domain (d02) comprising 250 3 250 grid cells resolved at 5.56 km. Two inner

domains of 340 3 361 grid cells resolved using a 1.85 km resolution are run

sequentially. The first (d03) is operated without the action of wind turbines to

provide a freestream WS. A second identical innermost domain (d04) is run with

the wind-farm parameterization turned on. The resolution used for d03 and d04 is

selected to match the expected wind-turbine separation of 1.85 km.

There are 57 layers in the vertical, 20 levels at which WSs are output are below 370 m

and 14 are within the rotor plane. The nineth level has a mean height of 143 m and is

taken as equivalent to that at the nominal wind turbine HH = 150 m (Figure 1D).

As of early 2021 wind-turbine selections and locations for the different U.S. offshore

LAs are not available. Thus, simulations are performed for three plausible wind-farm

layouts. The control employs a wind-turbine spacing of 1.85 km. For the IEA 15 MW

reference turbine used herein has a HH � 150 m and a rotor diameter (D) � 240 m.12

Thus, the spacing between wind turbine of 1.85 km is equal to a spacing of 7.7D. It is

equal to the average wind-turbine spacing from operating wind farms in Europe. In

this set of simulations all LAs are fully covered by a total of 1922 wind turbines (Fig-

ure 3). The mean wind turbine ICD for these control simulations is 4.34 MWkm�2.

Two sets of sensitivity simulations are also performed for a subset of atmospheric

flow conditions. In the corridor simulations, a maritime corridor is inserted by

removing the sixth north-south ‘‘column’’ of wind turbines in each wind-turbine clus-

ter, reducing the number of wind turbines to 1,604 (Figure 3). Such corridors have

been proposed to accommodate shipping safety considerations and enable fish-

ing,56 and may also mitigate wildlife impacts.57 In the half-density sensitivity simula-

tions, the density of wind turbines in each LA is halved reducing the total number of

wind turbines to 968. The resulting ICD (�2.1 MWkm�2) is at the lower end of cur-

rent-generation European offshore wind farms.

Statistical methods

Power production reported here derives directly from the WRF wind-farm parame-

trization and is determined by the WS across the rotor plane and the wind-turbine

power curve (Figure 1E).

Wind regimes in the LA clusters are compared by fitting time series of modeled free-

stream WS at the nominal wind-turbine HH of 150 m from the centroids of each LA

cluster to a two-parameter Weibull distribution:

pðWSÞ = 1� exp

"
�
�
WS

A

�k
#

(Equation 3)

where the two parameters in this probability distribution are the scale parameter, A

(units of ms�1) that describes the peak in theWS distribution and shape parameter, k,

that describes the dispersion around that peak. These parameters are fitted using

maximum likelihood methods.45

The wake intensity and spatial extent is characterized using the mean fractional

velocity deficit (vd) that describes the difference in WS due to the action of wind

turbines. The mean vd in each grid cell is computed using all output from each

5-day simulation (i.e., after the 6-h spin-up period is concluded) as:
2682 Joule 5, 2663–2686, October 20, 2021



ll
Article
vd =
1

n

Xi =n

i =1

�
WSWTðx;y;iÞ �WSNoWTðx;y;iÞ

WSNoWTðx;y;iÞ

�
(Equation 4)

The fractional velocity deficit is calculated using wind speeds at the wind-turbine HH

using output from simulation domain d04 with the action of wind turbines included

(WSWT) and output from simulation domain d03 where no wind turbines are included

(WSNoWT). vd is the mean of normalized difference inWS in each grid cell (x, y) at each

of the 720 10-min timesteps in each 5-day period (i = 1 to n = 720). A two-sample

t-test with a threshold p value of 0.01 is applied to assign statistical significance to

the mean pairwise differences in WS. Results are corrected for multiplicity by ranking

the p values from each grid cell (where j = 1 is allocated to the smallest p value and kk

is the total number of grid cells) and then selecting as statistically significant only

those for which the following condition is realized45:

pj%
j

kk
p (Equation 5)

The concept of NWE is introduced to characterize the region of disturbed flow

generated by a wind farm that is colloquially referred to as the ‘‘wind shadow.’’

NWEs are calculated for each LA cluster in each 5-day simulation as the area covered

by a mean vd % �0.05 (Areavd%�0:05) divided by the spatial extent of the LA cluster

(i.e., group of adjacent LAs, AreaLAcluster ) that generates the wake:

NWE =
Areavd%�0:05

AreaLAcluster
(Equation 6)

The difference in NWE (DNWE) from each LA cluster in simulations with the control

layout and the half-density layout is given by:

DNWE =
NWEcontrol �NWEhalf

NWEcontrol
(Equation 7)

Statistical models are constructed that describe theNWE, (i.e., the area covered by a 5%

velocity deficit relative to the freestreamWS normalized by the areal extent of the wind-

turbine deployment) as a function of prevailing meteorology. Separate models are

developed using output from the control layout simulations and using output from

the half-density wind-farm layouts. In these analyses the NWE from each cluster of LAs

is computed for each 10-min period along with the freestream WS, log10(TKE) and

PBLH at the center of that LA cluster. To build stable regression models output from

each LA cluster and each 10-min time stamp are first composited into combined classes

of wind speed, turbulence and planetary boundary layer heights using sevenWS classes

(4–7, 7–10, 10–13, 13–16, 16–19, 19–22, 22–25 ms�1), five log10(TKE) classes (53 10�5

to 53 10�4, 53 10�4 to 53 10�3, 53 10�3 to 53 10�2, 53 10�2 to 53 10�1, 53 10�1

to 5 m2s�2) and six PBLH classes (0–400, 400–800, 800–1,200, 1,200–1,600, 1,600–

2,000, 2,000–2,400 m). The calculations are performed separately for each LA cluster

(Figure 7) and then combined for the model generation. For each combined class of

wind speed, turbulent kinetic energy and planetary boundary layer heights that has >

4 members, mean values of NWE, WS, log10(TKE) and PBLH are computed. The result-

ing regression equations describe NWE as a function of these predictors (see Figure 7).

The regression coefficients are deemed statistically significant if they differ from zero at

the 99%confidence level and the goodness of fit is evaluated using the R2 value adjusted

for the number of predictors.45

An estimate of wake-induced power production loss is made by computing the

maximum possible power production in each 10-min period if each wind turbine

experienced undisturbed flow. This estimate is derived by applying the IEA

reference turbine power curve (Figure 1E) to freestream WSs from the third
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simulation domain (d03) at a model height of �150 m in each grid cell where a wind

turbine is present in simulation domain d04. The difference between the power

derived using the wind-farm parameterization and this maximum possible power

from the freestream WS is the wake loss:

wakeloss =

Pi = n
1

�Py = y2
y = y1

Px = x2
x = x1PC

�
WS

�
xNoWT

; yNOWT
; i
���

�Pi =n
1

�Py = y2
y = y1

Px = x2
x = x1PFitchðxW

n
(Equation 8)

where I denotes the time stamps and ranges from 1 to n, where n = 720 for 10-min

output over 5 days. PC is the power production as a function of WS computed from

the power curve for the IEA 15 MW reference wind turbine (Figure 1E). PFitch is the

power production from those same grid cells in simulation domain d04 computed

by the modified Fitch scheme. The grid cells considered y1:y2 and x1:x2 are those

that contain wind turbines in d04 for the control simulation.
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Cañadillas, B., Foreman, R., Schulz-Stellenfleth,
J., Djath, B., et al. (2018). First in situ evidence of
wakes in the far field behind offshore wind
farms. Sci. Rep. 8, 2163. https://doi.org/10.
1038/s41598-018-20389-y.

25. Barthelmie, R.J., Pryor, S.C., Frandsen, S.T.,
Hansen, K.S., Schepers, J.G., Rados, K., Schlez,
W., Neubert, A., Jensen, L.E., andNeckelmann,
S. (2010). Quantifying the impact of wind
turbine wakes on power output at offshore
wind farms. J. Atmos. Oceanic Technol. 27,
1302–1317. https://doi.org/10.1175/
2010JTECHA1398.1.

26. Pryor, S.C., Shepherd, T.J., Volker, P.J.H.,
Hahmann, A.N., and Barthelmie, R.J. (2020).
‘‘Wind theft’’ from onshore wind turbine arrays:
sensitivity to wind farm parameterization and
resolution. J. Appl. Meteorol. Climatol. 59,
153–174. https://doi.org/10.1175/JAMC-D-19-
0235.1.

27. Wind Europe. (2020). Offshore Wind in Europe
key trends and statistics (wind Europe). https://
windeurope.org/wp-content/uploads/files/
about-wind/statistics/WindEurope-Annual-
Offshore-Statistics-2019.pdf.

28. Mytilinou, V., and Kolios, A.J. (2019). Techno-
economic optimisation of offshore wind farms
based on life cycle cost analysis on the UK.
Renew. Energy 132, 439–454. https://doi.org/
10.1016/j.renene.2018.07.146.

29. Bosch, J., Staffell, I., and Hawkes, A.D. (2019).
Global levelised cost of electricity from
offshore wind. Energy 189, 116357. https://doi.
org/10.1016/j.energy.2019.116357.

30. Deutsche WindGuard. (2018). Capacity
densities of European offshore wind farms.
https://www.msp-platform.eu/practices/
capacity-densities-european-offshore-wind-
farms.

31. Enevoldsen, P., and Jacobson, M.Z. (2021).
Data investigation of installed and output
power densities of onshore and offshore wind
turbines worldwide. Energy Sustain. Dev. 60,
40–51. https://doi.org/10.1016/j.esd.2020.11.
004.

32. Wiser, R., Rand, J., Seel, J., Beiter, P., Baker, E.,
Lantz, E., and Gilman, P. (2021). Expert
elicitation survey predicts 37% to 49% declines
in wind energy costs by 2050. Nat. Energy 6,
555–565.

33. Nygaard, N.G. (2014). Wakes in very large wind
farms and the effect of neighbouring wind
farms. J. Phys.: Conf. Ser. 524, 012162. https://
doi.org/10.1088/1742-6596/524/1/012162.

34. Schneemann, J., Rott, A., Dörenkämper, M.,
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Abstract. As many coastal regions experience a rapid increase in offshore wind farm installations, inter-farm
distances become smaller, with a tendency to install larger turbines at high capacity densities. It is, however,
not clear how the wake losses in wind farm clusters depend on the characteristics and spacing of the individual
wind farms. Here, we quantify this based on multiple COSMO-CLM simulations, each of which assumes a
different, spatially invariant combination of the turbine type and capacity density in a projected, future wind
farm layout in the North Sea. An evaluation of the modelled wind climate with mast and lidar data for the period
2008–2020 indicates that the frequency distributions of wind speed and wind direction at turbine hub height are
skillfully modelled and the seasonal and inter-annual variations in wind speed are represented well. The wind
farm simulations indicate that for a typical capacity density and for SW winds, inter-farm wakes can reduce
the capacity factor at the inflow edge of wind farms from 59 % to between 54 % and 30 % depending on the
proximity, size and number of the upwind farms. The efficiency losses due to intra- and inter-farm wakes become
larger with increasing capacity density as the layout-integrated, annual capacity factor varies between 51.8 % and
38.2 % over the considered range of 3.5 to 10 MW km−2. Also, the simulated efficiency of the wind farm layout
is greatly impacted by switching from 5 MW turbines to next-generation, 15 MW turbines, as the annual energy
production increases by over 27 % at the same capacity density. In conclusion, our results show that the wake
losses in future wind farm clusters are highly sensitive to the inter-farm distances and the capacity densities of
the individual wind farms and that the evolution of turbine technology plays a crucial role in offsetting these
wake losses.
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1 Introduction

The global capacity of offshore wind technologies has in-
creased more than 10-fold over the previous decade as part of
the urgent transition to low-emission energy systems (IPCC,
2022). In 2021, the unprecedented commissioning of over
17 GW of offshore wind capacity pushed the cumulative,
global capacity past 50 GW (Musial et al., 2022). In Eu-
rope, hosting more than half of that global offshore capac-
ity, annual growth rates are expected to surpass 4 GW per
year in 2023 (Komusanac et al., 2021). At the same time,
the size and capacity of individual turbines are increasing,
with a global average rating of 7.4 MW (8.5 MW in Eu-
rope) in 2021 compared to 3.3 MW in 2011 (Komusanac
et al., 2021; Musial et al., 2022). As wind turbines off-
shore are organized in arrays, the total efficiency is impacted
by turbine-to-turbine wake effects which strongly depend
on the inter-turbine spacing and the size of the wind farm
(e.g. Meyers and Meneveau, 2012; Stevens et al., 2016; An-
tonini and Caldeira, 2021). Currently, limited space and the
urgent decarbonization of electricity systems lead to the in-
stallation and planning of very dense wind farms (capacity
density> 10 MW km−2) and exceptionally large wind farms
(capacity> 1 GW) that are strongly impacted by these tur-
bine interactions (Borrmann et al., 2018; Komusanac et al.,
2020; EMODnet, 2022). On top of that, hotspots such as
the North Sea are becoming more densely built (Matthijsen
et al., 2018), which amplifies the risk of inter-farm interfer-
ence through far-field wind farm wakes. These can extend
several tens of kilometres (Platis et al., 2018; Schneemann
et al., 2020) and can lead to considerable reductions in the
wind resource (e.g. Lundquist et al., 2019; Akhtar et al.,
2021; Munters et al., 2022). These developments raise ques-
tions on the magnitude of intra- and inter-farm wake losses in
a future, densely clustered wind farm layout including large
wind farms. Mesoscale models have been applied to illus-
trate the strongly reduced efficiency of very large wind farms
(e.g. Volker et al., 2017; Antonini and Caldeira, 2021; Pryor
et al., 2021) and how this depends on the turbine spacing
(Volker et al., 2017), but also how wind farms can signif-
icantly alter the energy yield of neighbouring wind farms
(e.g. Akhtar et al., 2021; Fischereit et al., 2022b). In this
study, we aim to complement the existing work by quan-
tifying how the long-term effect of wake losses in a hy-
pothetical, future North Sea wind farm layout depends on
the characteristics of the individual wind farms and on the
inter-farm distances. Concretely, this is done based on a set
of continuous simulations for one representative wind year,
with each simulation including a different but spatially in-
variant combination of the turbine type and capacity density
for the wind farms in a projected, future wind farm layout.
Although the WRF model is the most commonly used
mesoscale model for wind energy applications (Fischereit
et al., 2022a), it is important to involve several mesoscale
models to determine whether signals are robust, especially

when going to climatological timescales. In this study, we
make use of the regional climate model COSMO-CLM,
which has previously been applied for mesoscale wind
farm simulations (Chatterjee et al., 2016; Akhtar et al.,
2021, 2022) and also for the modelling of wind and wind
resources of the past (e.g. Reyers et al., 2015; Geyer et al.,
2015; Li et al., 2016) and future (e.g. Nolan et al., 2014; San-
tos et al., 2015; Reyers et al., 2016). The quality of mesoscale
wind farm simulations relies heavily on the accurate simu-
lation of the background wind climate, which is why these
models are typically evaluated with in situ, lidar and/or satel-
lite data (e.g. Hahmann et al., 2015; van Stratum et al., 2022;
Dirksen et al., 2022). The COSMO-CLM model has been
shown to skilfully reproduce winds from LES (Chatterjee
et al., 2016) and measurements by offshore masts (Geyer
et al., 2015; Akhtar et al., 2021). However, these evaluations
have only considered a limited number of datasets and time
periods. Therefore, an additional objective of this study is
to extend the evaluation of COSMO-CLM based on a large
set of multi-year, spatially distributed mast and wind lidar
data and a satellite product covering most of the North Sea.
With the focus on the wind resource, the evaluation includes
metrics of power production derived from the modelled and
measured wind speed data.

2 Data and methods

2.1 Model description

The development of the regional climate model COSMO-
CLM (COSMO version 5.0, CLM version 15) is a joint
effort between the COnsortium for Small-scale MOdelling
(COSMO) and the Climate Limited-area Modelling commu-
nity (CLM-Community) (Rockel et al., 2008). The Runge–
Kutta dynamical core solves the non-hydrostatic, compress-
ible hydro-thermodynamical equations on a rotated latitude–
longitude grid (Doms and Baldauf, 2013). Several coor-
dinate systems are available in the vertical dimension, of
which we used the height-based, terrain-following coordi-
nate with grid stretching. Additional physical processes were
represented with available parametrizations: for subgrid-
scale turbulence the standard choice was adopted, which is
the one-dimensional diagnostic closure scheme (level 2.5)
which is based on a prognostic TKE equation after Mellor
and Yamada (1982) as described in Raschendorfer (2001).
Surface fluxes were also parametrized and are coupled to
the included multi-layer soil model, TERRA-ML. In addi-
tion, parametrizations for grid-scale clouds and precipita-
tion, moist convection, and radiative processes were included
(Doms et al., 2013). An extensive description of the model
system is available in the documentation (e.g. Doms and Bal-
dauf, 2013).

The simulation domain covered a large fraction of the
North Sea with a horizontal grid spacing of 0.025° (∼
2.8 km) (Fig. 1). In the vertical dimension, 61 levels were
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Figure 1. Map of the study area showing the simulation domain (cyan, solid line) and the evaluation domain (cyan, dashed line). The
locations of the in situ measurement stations (orange dots) and lidar stations (green triangles) that are used for the model evaluation are also
indicated, in addition to the hypothetical future wind farm layout (grey polygons) and the four analysis transects TR1–TR4 (yellow lines)
used for the wind farm simulations. Created using QGIS3.4.

used up to an elevation of 22 km with a spacing of ap-
proximately 20 m near the surface and 30 m at turbine hub
height. The relaxation zone at the lateral boundaries was set
to a width of 40 km, whereas the spin-up zone was consid-
ered an additional 73 km wide, in agreement with the rec-
ommendations of Matte et al. (2017). The remaining inner
part of the simulation domain was considered for the evalu-
ation and analysis (Fig. 1). The ERA5 reanalysis (Hersbach
et al., 2020) was used as forcing at the boundaries with up-
dates every hour. No additional nesting stages were used, in
line with results from Brisson et al. (2015). At the meso-γ
scale, the model resolution partly allows the explicit devel-
opment of deep convection so that only shallow convection
was parametrized according to the scheme of Tiedtke (1989).
Switching of the deep convection parametrization on this res-
olution has previously been shown not to degrade COSMO
simulations (Vergara-Temprado et al., 2020). In COSMO5.0,
the TKE advection term in the prognostic equation is only

included for the experimental, LES-type turbulence schemes.
With the focus on wind farm wake development in the second
part of this study, we implemented the TKE advection term
for the standard turbulence scheme in COSMO5.0 based on
version 5.01.

Specific to this study, we also employed the Fitch wind
farm parametrization (WFP; Fitch et al., 2012), which has
been implemented in COSMO5-CLM15 (Chatterjee et al.,
2016; Akhtar and Chatterjee, 2020). This additional mod-
ule represents the wind farm forcing on the atmosphere as
a sink of kinetic energy and a source of TKE. Although
it has been suggested to reduce the TKE coefficient in the
parametrization based on a comparison with large eddy sim-
ulations (LES) (Archer et al., 2020), the original value was
retained in this study, as other studies did not find that this
leads to better performance (Siedersleben et al., 2020; Larsén
and Fischereit, 2021). Several other wind farm parametriza-
tions exist (Fischereit et al., 2022a), and it has been shown
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that the modelled wind speed deficits inside and behind a
wind farm can vary substantially from the Fitch WFP (Ali
et al., 2023). However, validation of the Fitch WFP with
offshore masts, lidars and airborne measurements in the
wake of a wind farm has shown very good performance for
HARMONIE-AROME as wind speed biases are strongly re-
duced (van Stratum et al., 2022; Dirksen et al., 2022). This
good performance has also been determined in WRF by com-
paring to offshore masts (Garcia-Santiago et al., 2022) and
in COSMO-CLM by comparing to LES (Chatterjee et al.,
2016) and airborne measurements (Akhtar et al., 2021). Wind
speed reductions inside of a wind farm have also been shown
to agree well with airborne measurements (Ali et al., 2023),
mast measurements (Dirksen et al., 2022) and RANS simula-
tions (Fischereit et al., 2022c). Moreover, comparisons with
other WFP schemes show that Fitch generally outperforms
these other schemes, both inside a wind farm and in the farm
wake (Fischereit et al., 2022c; Ali et al., 2023). For a detailed
overview of the performance validation of this parametriza-
tion, we refer to the review of Fischereit et al. (2022a).

2.2 Evaluation run

To evaluate the model performance, a simulation was per-
formed for a period of 13 years (2008–2020). Data from in
situ, lidar and satellite measurements over the North Sea are
abundant in both space and time for this period. Addition-
ally, the length of the simulation ensures that a large vari-
ation in wind conditions, as described in e.g. Geyer et al.
(2015) and Ronda et al. (2017), is sampled. The wind farm
parametrization was excluded in this simulation because a
time-static wind farm layout cannot represent the rapidly
growing wind farm layout over this time period and most ob-
servations were representative for wind-farm-free conditions.
Hence, only the undisturbed wind climate was evaluated, and
the observations were filtered accordingly, which will be dis-
cussed in more detail in Sect. 2.4.1. The instantaneous wind
field around hub height was written to output at a 10 min fre-
quency following the standard for wind energy assessments
(Menezes et al., 2020).

2.3 Wind farm simulations

The projected future wind farm layout used in the wind farm
simulations was constructed from the EMODnet wind farm
dataset (EMODnet, 2022) and GIS data from the Royal Bel-
gian Institute for Natural Sciences (Vigin, 2022) (Fig. 1).
Next to the operational wind farms today, this layout in-
corporates the concessions that are in different stages of
the construction process, zones for which consent has been
authorized and also large development zones. Because the
wind farm parametrization assumes that turbines within a
single grid cell never have any wake interactions, no addi-
tional information is required on the layout of the turbines in
each wind farm. The turbines were assumed constantly op-

erational, unless the wind speed was below the cut-in wind
speed or above the cut-out wind speed. Considering the com-
putational cost of these experiments, the time span was lim-
ited to one representative year in terms of the North Sea wind
field. This year was determined in a procedure based on the
one outlined in Tammelin et al. (2013). We used 31 years
of hourly, hub-height wind fields from the ERA5 reanalysis
(1990–2020) to compute a metric R for the representative-
ness per year and per grid cell:

Ri,j,y =
S1i,j,y
σS1

+
S2i,j,y
σS2

+
S3i,j,y
σS3

, (1)

where the indices i, j and y refers to a specific grid cell and
year. These R values were computed per year for each North
Sea grid cell between 51 and 55.5° latitude. Higher values
of R correspond to more representative years. The different
scores (S1–S3) are based on the agreement between single-
year and the long-term (31 year) histograms as computed by
the Perkins skill score:

PSS(H1,H2)=
n∑
b=1

MIN
(
F b
H1
,F b

H2

)
, (2)

where H1 and H2 represent the first and second histogram
and F b represents the normalized frequency for bin b. The
PSS represents the fraction of overlap between the two his-
tograms, so that a PSS of 1 (or 100 %) represents complete
overlap. For one-dimensional histograms, this metric is con-
nected to the Earth mover’s distance (EMD) metric, which
in contrast represents the area of mismatch between two his-
tograms (Rabin et al., 2008). S1 is the PSS between a wind
speed histogram for a single-year and the multi-year wind
speed histogram, using a bin width of 0.5 m s−1. S2 is the
same as S1 but for wind direction, using a bin width of 30°.
Finally, S3 represents the mean PSS between the single- and
multi-year wind speed distributions over 12 wind direction
sectors. The scores (S1–S3) are standardized by the standard
deviation to give each term in the sum equal weight. Summa-
tion of R over all grid cells then yields a representativeness
for a specific year. The different scores and the final score per
year are summarized in Figs. S1 and S2 in the Supplement,
respectively. Based on this procedure, the year 2016 was se-
lected for the simulations, as the representativeness is high
overall for this year (Fig. S1). In addition, the representative-
ness is especially high for wind direction (Fig. S2), which is
particularly important for the study of inter-farm wake inter-
actions.

Five simulations were performed, consisting of one sim-
ulation without wind farms (NOWF) and four simulations
using a fixed wind farm layout with the same turbine type
and capacity density for all wind farms (Table 1). Based on
the number of turbines, the total capacity and the surface
area of operational wind farms in the North Sea, a median
turbine capacity of 4.85 MW and a representative capacity
density of 8.1 MW km−2 were determined. The 5 MW refer-

Wind Energ. Sci., 9, 697–719, 2024 https://doi.org/10.5194/wes-9-697-2024



R. Borgers et al.: Mesoscale modelling of North Sea wind resources with COSMO-CLM 701

Table 1. Summary of the turbine type and capacity density used in
the different wind farm model simulations.

Identifier Turbine type Capacity density (MW km−2)

NOWF – –
NREL8.1 NREL 5 MW 8.1
IEA3.5 IEA 15 MW 3.5
IEA8.1 IEA 15 MW 8.1
IEA10.0 IEA 15 MW 10

ence wind turbine of the National Renewable Energy Lab-
oratory (NREL) (Jonkman et al., 2009)) with a hub height
of 90 m and a rotor diameter of 126 m was therefore used
in conjunction with the aforementioned capacity density in
one of the wind farm simulations (NREL8.1). Three addi-
tional cases were simulated in which the NREL 5 MW was
replaced by the 15 MW reference wind turbine of the Inter-
national Energy Agency (IEA) (Gaertner et al., 2020) with a
hub height of 150 m and a rotor diameter of 240 m, as 15 MW
turbines are expected to reach the market in a few years and
are now being selected for upcoming projects (Bento and
Fontes, 2019; Shields et al., 2021). The power curves of these
three turbines are available in Fig. S3. The three cases with
15 MW turbines were simulated with a different wind farm
capacity density.

– IEA3.5: low capacity density in which the inter-turbine
distance is 10 rotor diameters. This turbine spacing is
larger than is found in most offshore wind farms today
and corresponds to a lower cost per unit energy produc-
tion as the impact of turbine wakes is reduced and is
most relevant in regions where offshore space is rel-
atively abundant, such as for the United Kingdom or
Denmark (Borrmann et al., 2018).

– IEA8.1: the same capacity density as for the NREL8.1
scenario.

– IEA10.0: high capacity density with a larger revenue
per unit area but also increased wake-related losses.
This corresponds to a capacity density for planned
projects in regions where the available space is limited,
such as Belgium, the Netherlands and Germany (Bor-
rmann et al., 2018).

Based on the different simulations, the impact of the tur-
bine type and capacity density on the wake losses was as-
sessed. In addition, the roles of wind farm size and inter-
farm distance in these wake losses were investigated based
on the large variation in these properties over the wind farm
layout. The different simulations were compared along the
transects indicated on Fig. 1, which correspond to dominant
but also strongly disturbed wind directions, i.e. directions
along which the wind farms are densely clustered. For this
analysis, only winds in a sector of 30° around the transect

orientation (SW to NE for TR1, TR2 and TR4 and NW to
SE for TR3) were selected based on the centre grid cell on
the transect. The data selection based on the wind direction
reduced the dataset to approximately 14 % of the total for
transects TR1, TR2 and TR4 and to 8.1 % for TR3. Addi-
tionally, this transect analysis was extended to three stability
classes based on the bulk Richardson number (RB), a metric
for the dynamic stability, which will be discussed in more
detail in Sect. 2.5.3.

2.4 Measurement data

2.4.1 In situ masts

Wind measurements of 19 in situ stations (Fig. 1) were
obtained from the KNMI data platform, Meetnet Vlaamse
Banken, the Marine Data Exchange, the FINO data plat-
form and the TNO wind energy data platform (Table A1). Of
these 19 stations, 6 were actual meteorological masts with
measuring devices at multiple altitudes. The remaining sta-
tions correspond to coastal measurement poles and instru-
mentation mounted on oil, gas or light platforms and pro-
vide information at a single altitude. Average wind speed
and wind direction are available at 10 min intervals. A time-
line of the data availability is summarized for each station
in Fig. S4. For most stations, corrections were applied to the
measurements of the boom- or platform-mounted anemome-
ters and wind vanes in order to account for flow distortions
by the mast or other mounting infrastructure. These cor-
rections were performed by the data providers for the sta-
tions FINO1 and FINO3 (Westerhellweg et al., 2012; Leiding
et al., 2016), MMIJ (Werkhoven and Verhoef, 2012), WH and
WA. For the remaining stations with multiple anemometers
per height level, we avoided using measurements in the wake
of the mast or other infrastructure by selecting the measure-
ment with the highest 10 min average wind speed. A possible
drawback of this approach is that the measured wind speed
is overestimated in the case of lateral speed-up effects (Leid-
ing et al., 2016). If wind direction was provided with respect
to magnetic north, a magnetic-to-true north correction was
applied according to the location and timing of the dataset.
Finally, because no wind farm parametrization was included
in the evaluation run, measurements potentially taken in the
wake of wind farms were omitted from the dataset by filter-
ing out either a specific time range or a directional sector.
These dataset corrections are summarized in Table S1 in the
Supplement. A station-to-farm distance threshold of 50 km
was chosen to perform these corrections, as it is expected
that the impact of wind farm wakes on the long-term wind
speed statistics becomes relatively unimportant at this dis-
tance (Schneemann et al., 2020; Dirksen et al., 2022). The
total uncertainty on the wind speed measurements is a com-
bination of the uncertainties of calibration, mounting (includ-
ing flow obstruction by the mast), data acquisition and the
local site conditions. This total uncertainty can vary signifi-
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cantly between the stations. For the class 0.9A anemometers
at station MMIJ the total uncertainty was estimated at 1.5 %
for the top anemometer and 1.9 % for the boom-mounted
anemometers (Duncan et al., 2019). For the top anemome-
ters of the other meteorological masts, which have a compa-
rable class number as for MMIJ (Friis Pedersen et al., 2006),
we applied the same value of 1.5 % as the uncertainty esti-
mate. As the boom-mounted anemometers at the FINO sta-
tions were also mast-corrected prior to use, we adopted the
same value of 1.9 %. The mounting uncertainty for boom
anemometers at stations GG, LA and HGW is expected to be
larger because we only performed a simple correction. As-
suming an additional 2 % uncertainty on the mast correction,
this leads to a total uncertainty of 3.7 %. For the remain-
ing stations, we assumed a calibration uncertainty of 1.5%
(Coquilla et al., 2007), an operational uncertainty of 0.8 %
(Friis Pedersen et al., 2006) and an augmented 2 % uncer-
tainty on the data acquisition due to limited information on
acquisition and post-processing. For AWG1, P11B and WH
a mounting uncertainty of 5 % was estimated due to pres-
ence of lateral flow obstructions. For the other stations, where
the device is mounted on the top of a platform or platform-
mounted mast, a mounting uncertainty of 2 % was assumed
following Verkaik (2001).

2.4.2 Wind lidar

In addition to the cup anemometers, measurements from six
wind lidars were used for the evaluation (Fig. 1). These lidars
use light beam scanning technology to derive vertical profiles
of wind speed and direction at regular height intervals and al-
low evaluation of the wind field above the typical 90 m top of
meteorological masts. As for the in situ measurements, wind
speed and direction are provided as 10 min averages. The
data were obtained from the Dutch services TNO wind en-
ergy and Rijksdienst voor Ondernemend Nederland (RVO).
The lidars were installed during the pre-construction stages
of offshore wind farm development (Table A2). The LEGO,
MMIJ, K13 and EPL lidars are installed on the same plat-
forms as the cup anemometers (Table A1). The BO and TNW
lidars are floating lidars and are mounted on a Fugro SEA-
WATCH buoy. Estimates of the uncertainty are from Wouters
and Verhoef (2019a, b, c) for LEGO, EPL and K13; from
Poveda and Wouters (2015) for MMIJ; and from the report
by Dhirendra (2014) for the floating lidars BO and TNW.

2.4.3 ASCAT

The Advanced SCATterometer (ASCAT) sensor on the Eu-
ropean MetOp satellites uses radar technology to determine
the near-surface wind speed and direction over the sea (Gel-
sthorpe et al., 2000; Figa-Saldaña et al., 2002). Although the
ASCAT product only provides information on the surface
wind, it complements the in situ and lidar data as it covers
most of the North Sea basin. For this study, we considered

the L3-reprocessed ascending and descending passes of the
MetOp-A satellite from the website of the Copernicus Ma-
rine Service (CMEMS). The satellite was operational for the
complete 13 years of this simulation. Specifically, the variant
on a 12.5 km grid with a horizontal grid spacing of 25 km was
used, which has been validated against buoy measurements
(Verhoef and Stoffelen, 2009). The long-term instrumental
stability is estimated to be below 0.1 m s−1 for this product,
whereas the climatological uncertainty is ±0.1 m s−1, with
some anomalies of+1 m s−1 at the Dutch coast. The datasets
for both passes together provide roughly one instantaneous
measurement per day for most of the North Sea that we con-
sider (4500 samples in total). Only close to the coasts is data
coverage much lower (100–3000 samples), which is a well-
known issue with remotely sensed winds related to contami-
nation with land signal (Bourassa et al., 2019).

2.5 Evaluation approach

2.5.1 Model collocation with in situ and lidar

Over a 10 min period, the wind travels over a distance com-
parable to the edge length of a 0.025° grid cell. Because the
model wind components represent smoothed grid box aver-
ages, the 10 min time averages of the observations were di-
rectly compared to instantaneous values of the grid cell in
which the station is located. In the case of gaps in the time
series of the in situ and lidar data, the corresponding time
steps were also eliminated from the model grid point time
series. The model wind speed data were interpolated to the
measurement heights using the wind profile power law:

Vs = V (hm) ·
(
hs

hm

)α
, (3)

where Vs is the wind speed at sensor height, V (hm) is the
wind speed at the first model level below sensor height and
α is the shear coefficient which is computed as

α =
ln
(
V (hm+1)

/
V (hm)

)
ln
(
hm+1

/
hm
) , (4)

wherem+1 denotes the first model level above sensor height.
In contrast to the wind speed, the model wind direction at
sensor height was computed after linear interpolation of the
horizontal wind components of the model levels just above
and below sensor height. The Zephir 300S lidar has a well-
known 180° ambiguity that can occur in the wind direction
time series as it relies on a sonic anemometer just above the
lidar to determine the sign of the wind vector. In the case of
low wind speeds and/or flow obstructions, it is possible that
the incorrect sign is determined and the lidar’s wind direction
is 180° off (Knoop et al., 2021). We corrected this 180° error
by adding or subtracting 180° if the wind direction in the
measurements differs more than 90° from the modelled wind
direction (∼ 2 % occurrence) after Dirksen et al. (2022).
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2.5.2 Model collocation with ASCAT and triple
collocation

For the comparison with ASCAT, the model surface winds
were regridded to the 12.5 km grid of the measurements with
first-order conservative remapping. This ensures that all the
source grid cells contained within a target grid cell have sim-
ilar weight in the regridding, in agreement with the ASCAT
winds being computed from the signal of this complete area.
Afterwards, the measurement time series of each ASCAT
grid cell was matched by a model time series for that same
grid cell by linear interpolation in time.

Additionally, a comparison between the model, ASCAT
and in situ data was conducted at stations WH, EPL and
MMIJ. These stations were selected because the location is
far enough from the coast to ensure sufficient data points in
the ASCAT data and the measurement height is close to 10 m,
which reduces any vertical extrapolation errors to 10 m in
the in situ data. This extrapolation was done using the power
law with a constant shear coefficient of 0.11. The in situ data
were then also linearly interpolated to the ASCAT measure-
ment times, and all datasets were limited to the timings where
both ASCAT and in situ measurements are available. Finally,
the grid cells in which the stations are located were selected
from the model and ASCAT datasets for the comparison.

2.5.3 Stability classification

The comparison between COSMO-CLM and the measure-
ments in terms of wind speed was further extended to differ-
ent classes of atmospheric, dynamic stability because the sta-
bility strongly determines the wind conditions over the North
Sea (Stull, 1988; Sathe et al., 2011) and also determines the
atmospheric response to a wind farm forcing (Platis et al.,
2021). This stability classification was done based on the
bulk Richardson number (RB), which is computed as

RB =

g

θv

1θv
1z(

1u
1z

)2
+

(
1v
1z

)2 , (5)

where g corresponds to the gravitational constant, θv is the
virtual potential temperature, z is height, and u and v are
the zonal and meridional wind speed components, respec-
tively. The overbar over the virtual potential temperature
denotes that it is averaged over the four model layers be-
tween 50 and 150 m height. Finally, the gradients in u, v and
θv were determined by averaging the gradients between each
of the subsequent layers between 50 and 150 m. Based on
the (RB), we can identify three distinct dynamic stability
regimes (Grachev et al., 2013; Dirksen et al., 2022).

– Unstable: RB < 0. This is the case when the tempera-
ture gradient is negative, which corresponds to an un-
stable thermal stratification.

– Weakly stable: 0≤ RB ≤ 0.25. This is the case when the
temperature gradient is positive, but the temperature ef-
fect is weak compared to the vertical wind shear. In this
case, the wind-shear-generated turbulence is relatively
strong compared to the buoyant damping.

– Stable: RB > 0.25. This is the case when the tempera-
ture gradient is positive and strong compared to the ver-
tical shear. In this case, the wind-shear-generated turbu-
lence is strongly damped, and this region of the ABL
can be considered dynamically stable.

Gradients were calculated based on potential temperature
instead of virtual potential temperature as an analysis of the
driving data showed minimal variations of specific humidity
over the considered height range. A comparison of the mod-
elled temperature gradients with measured temperature gra-
dients at station MMIJ between 90 and 21 m a.m.s.l. shows
a good correspondence in the long-term temperature gradi-
ent probability distribution, indicating sufficient model skill
for this subdivision into stability classes (Fig. S5). Because
vertical profiles of pressure and temperature are generally
not available over the range of the meteorological masts or
wind lidar scanning ranges, the stability criterion can only be
computed for the model. Based on a good temporal corre-
lation between the temperature gradients of COSMO-CLM
and measurement mast MMIJ (Pearson correlation coeffi-
cient= 0.85), the time steps matched to a stability class for
the model grid cell nearest to each measurement location
were also matched to that stability class for the measurement
data.

2.5.4 Evaluation metrics

We compared the magnitudes of the mean wind speed differ-
ence and the observational uncertainty to identify any model
bias: an exceedance of the observational uncertainty at a
measurement station was used as the threshold for the pres-
ence of a model bias at that location. In addition, the PSS
(Sect. 2.3) was employed as a metric to express the agree-
ment in the shape of two histograms of either wind speed or
wind direction.

Because the relationship between wind speed and wind
turbine power production is non-linear, we also evaluated
differences between COSMO-CLM and the observations in
terms of the capacity factor, which is given by

CF= 100

n∑
i=1
P (Vi)

nP (Vr)
[%], (6)

where Vi is the hub-height wind speed at some instance i in
the time series; Vr is the rated wind speed; and P is the gen-
erated power, which is a turbine-specific function of the wind
speed. So, the capacity factor is the ratio between the power
production of a specific turbine based on a wind speed time
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series and the theoretical, maximum power production over
that same period, i.e. for a turbine continuously operating at
full capacity. This is an idealized notion of the capacity factor
as it concerns an isolated turbine which constantly operates
according to the power curve. For these calculations, we con-
sidered the power curve of the NREL 5 MW reference wind
turbine, with a hub height of 90 m, for the meteorological
masts with the top anemometer below 100 m and the power
curve of the DTU 10 MW reference wind turbine (Bak et al.,
2013), with a hub height of 119 m, for FINO1, FINO3 and
the wind lidars (Fig. S3). An uncertainty range on the capac-
ity factor based on the observed wind speeds was determined
based on the uncertainty on the wind speed measurements:
the observed wind speed distribution was shifted linearly by
the product of the uncertainty and the mean wind speed after
which upper and lower bounds on the capacity factor were
computed. As the capacity factor is a percentage, absolute
differences are also a percentage, so to avoid confusion it is
always explicitly stated whether absolute or relative differ-
ences in the capacity factor are considered.

3 Results and discussion

3.1 Model evaluation

This subsection covers the model performance evaluation.
First, the general evaluation based on all validation sources
and the complete height range (10 to 290 m) is described.
This is followed by a more detailed performance analysis at
turbine hub height (∼ 100 m), and finally the evaluation is
extended to the different atmospheric stability classes.

The difference in the long-term mean wind speed between
the in situ and lidar stations varies with height (Fig. 2). Be-
low 90 m, the difference is generally negative (model un-
derestimates the mean) and exceeds the measurement uncer-
tainty range, indicating a model bias to lower wind speeds.
However, the magnitude of the bias generally drops with in-
creasing altitude over the considered height range, albeit with
some exceptions (MMIJ, TNW). At measurement heights at
or above 90 m, the difference is generally smaller and falls
within the uncertainty range of the measurements. The gra-
dient with height persists and the difference is positive above
130 m at the locations of the wind lidars. Although differ-
ences over height are substantial, there is no robust indica-
tion of regional differences in the ability of COSMO-CLM to
model the climatological mean wind speed. The same figure
but with relative differences is included in the Supplement
(Fig. S6).

The mean difference between COSMO-CLM and the AS-
CAT data is between −0.5 and 0.5 m s−1 for most grid cells
(Fig. 3). For approximately 45 % of the grid cells the mean
difference is within the ASCAT climatological uncertainty
of ±0.1 m s−1. These grid cells are generally located far-
ther from the coast and correspond to the regions without
in situ measurements, which is an indication of good model

performance in this region. The model underestimation near
the surface that was identified against the in situ data in the
southern North Sea is much smaller than the differences com-
pared to ASCAT in this region (cf. Figs. 2 and 3). A three-
way comparison with three in situ stations shows that the
mean differences against the in situ data exceed the in situ
measurement uncertainty for both COSMO-CLM and AS-
CAT (Fig. 3). Whereas COSMO-CLM generally underesti-
mates the mean near-surface wind speed, ASCAT overesti-
mates it with a larger magnitude, which explains the differ-
ences in PSS values. The PSS values are similar when both
COSMO-CLM and ASCAT are corrected for the systematic
bias with respect to the in situ data, which indicates that both
perform similarly in approximating the distribution shape of
the in situ data.

The distributions of wind speed near 100 m height match
well with the meteorological masts and lidar stations in most
cases (Fig. 4), leading to a PSS generally above 95 %. The
associated absolute differences in the idealized capacity fac-
tor are within the uncertainty based on the wind speed mea-
surements for 4 out of 10 stations. For FINO1, K13, MMIJ
and HGW the differences are outside the uncertainty range,
but the deviations from the lower bound of the uncertainty
range are less than 1 %, while the deviations are higher for
the GG and LA masts. For K13 and HGW the capacity factor
difference exceeds the capacity factor uncertainty, whereas
the mean wind speed difference is within the wind speed un-
certainty, which can be linked to the non-linear relationship
between wind speed and power production.

Although the inter-annual variability of the annual mean
hub-height wind speed is typically around 1 m s−1, the cor-
responding variability in the wind speed bias between the
model and the measurements is typically around 0.1 m s−1

or 10 % of that value (Table 2). The corresponding overlap
between the single-year histograms generally does not vary
more than 2 % over the years. Hence, the agreement in dis-
tribution location and shape between COSMO-CLM and the
measurements remains consistent over consecutive years, re-
gardless of the inter-annual variability in the wind conditions.

The intra-annual cycle in the wind speed distribution is
also well represented by the model (Fig. 5). The gradual
seasonal variation from higher (winter) to lower (summer)
median wind speeds is accurately reproduced in addition
to the variation in distribution width (Q25–Q75 range) and
more extreme conditions (Q5 and Q95). Moreover, in ex-
treme months the model also succeeds in modelling the wind
speed distribution as can be deduced from Fig. 5b at station
TNW for February 2020, albeit with a heavier right tail and
consequently more winds above the cut-out wind speed.

Evaluation of the long-term wind direction histograms
near turbine hub height (using a bin width of 20°) shows
an overlap of 95 % or more in most cases (Table 3) with
the magnitude of the bias generally below 4°. A reason
for the stronger deviation at FINO3 and EPL has not been
identified. Because the considered measurements vary sub-
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Figure 2. Wind speed bias (m s−1) for the complete time span of each measurement dataset. This concerns measurements between 10 and
290 m a.m.s.l. The vertical range is subdivided into 20 m intervals for readability. The presence of an asterisk indicates that the bias is within
the measurement uncertainty. Stations are clustered per region. The considered time periods for each measurement dataset can be found in
Tables A1 and A2.

Table 2. Inter-annual range of the mean wind speed and of the agreement between the model and observations, as expressed by the mini-
mum/maximum annual mean difference and the minimum/maximum annual PSS for the different years in the measurement period.

Station Period (NR years) Annual mean Mean difference
(m s−1) (m s−1) PSS (%)

MAX MIN MAX MIN MAX MIN

FINO3 (107 m) 2010–2013 (4) 11.2 9.5 −0.11 −0.22 98 97
MMIJ (92 m) 2012–2015 (4) 10.3 9.8 −0.44 −0.50 96 94
K13 lidar (115 m) 2018–2020 (3) 10.4 9.9 −0.2 −0.28 97 97
LEGO lidar (115 m) 2015–2020 (6) 11.1 9.2 −0.18 −0.28 97 95
LA (82 m) 2008–2010 (3) 9.5 8.6 −0.32 −0.47 95 93

stantially in measurement height, i.e. from 62 m a.m.s.l. up
to 120 m a.m.s.l., this comparison indicates consistency of
the good performance with height. The variations of the
wind speed statistics with the wind direction are also cap-
tured by the model (Fig. S7). This accurate reproduction of
the wind direction distributions and the direction-dependent
wind speed distributions is encouraging for the application to
wind farm modelling as wind farm shapes are tailored to the
regional wind climate.

The general differences in mean wind speed profiles for
the three stability classes agree well between the model and
the measurements (Fig. 6): winds are strongest under weakly
stable conditions and weakest under stable conditions, with
the wind speeds under unstable conditions falling in between.

The agreement between the profiles of the model and the
measurements differs between the stability classes: under
stable conditions the shear in the model is too strong be-
tween 40 and 200 m, leading to a negative model bias be-
low 160 m for EPL and LEGO and below 180 m for K13 and
TNW. Around 100 m, the respective underestimations are at
least −0.3 and −0.6 m s−1. Such an underestimation under
stable conditions is not uncommon for climate models (Wi-
jnant et al., 2014; Sheridan et al., 2021). For weakly stable
conditions, there is not a clear bias around 100 m, but the
deviations below 90 m and above 150 m are outside of the
observational uncertainty. The small vertical gradient under
unstable conditions is represented well by the model with
only small deviations that are well within the measurement
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Figure 3. Difference in long-term mean wind speed between COSMO-CLM and ASCAT. Yellow dots indicate the measurement stations
for triple collocation. The text boxes summarize the mean 10 m wind speed for three in situ stations and the agreement of ASCAT and
COSMO-CLM in terms of the mean difference and the PSS. The PSS values between brackets are after elimination of the mean difference
between the two histograms to remove the effect of distribution location.

Figure 4. Histograms of the collocated wind speed datasets. Orange: overlap between the histograms; light orange: only COSMO-CLM;
grey: only the measurements. In addition, the associated PSS, the capacity factor based on the measured wind speeds and the absolute
difference in capacity factor between the model and the measurements are indicated. The presence of a red asterisk indicates that the capacity
factor difference falls within the uncertainty on the capacity factor for the measurements.
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Figure 5. Boxplots representing the multi-year wind speed distribution per month for the observations (grey) and the model (orange). Shown
for the three masts and three lidar stations at turbine hub height. The box corresponds to the Q25–Q50–Q75 wind speeds. The lower and
upper whiskers are the Q5 and the Q95 percentiles, respectively.

Table 3. Bias in the wind direction (model – observations) and the
Perkins skill score between the histograms of wind direction (bin
width= 20°).

Station Bias (°) PSS (%)

FINO3 (101 m) −8.0 96
FINO1 (91 m) 1.9 95
TNW lidar (120 m) −4.0 97
K13A lidar (116 m) −2.2 97
MMIJ lidar (115 m) 1.0 96
EPL lidar (116 m) 8.7 93
LEGO lidar (115 m) 0.7 96
London Array (78 m) −1.9 96
Humber Gateway (86 m) 2.3 96
Greater Gabbard (62 m) −3.5 97

uncertainty over the complete height range. The hub-height
wind speed distributions as reflected in the boxplot mainly
differ in distribution location, with the strongest differences
under stable conditions. Corresponding capacity factor val-
ues were calculated with lower and upper uncertainty bounds
for the observations (Fig. S8). Under stable conditions, the
deviations between the model and observations exceed the
uncertainty range, so the absolute model underestimation of
the capacity factor is at least 2.5 %. For unstable and weakly
stable conditions, the deviations are within the uncertainty
range.

3.2 Impact of wind farm characteristics on cluster-scale
wake losses

This subsection covers the results of the wind farm simula-
tions. First, the impact of the NREL8.1 base scenario on the
wind climate and wind resource is described, also under dif-
ferent atmospheric stability conditions. Afterwards, the dif-
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Figure 6. Model evaluation for different stability classes. Top row: vertical profiles of the mean wind speed per stability class for four lidar
stations (full line) and the corresponding model output (dashed line). The stability classes are stable (blue), unstable (pink) and weakly
stable (green). The indicated percentages are the relative frequency of the different stability classes at hub height. Bottom row: boxplots
of the hub-height wind speeds per stability class for the same four lidar stations (grey) and the corresponding model output (orange). The
box corresponds to the Q25–Q50–Q75 wind speeds. The asterisk indicates the mean, and the lower and upper whiskers are the Q5 and the
Q95 percentiles, respectively.

ferent wind farm scenarios are compared in terms of cluster-
scale wake effects and efficiency of power production.

The modelled mean wind speed at 90 m for 2016 varies
from 7.5 m s−1 at the coast up to 10 m s−1 in the open North
Sea (Fig. 7). The associated capacity factor varies between
45 % and 60 %, and the simulated pattern agrees well with
earlier, multi-decadal estimates over the North Sea (Geyer
et al., 2015). Stability separation shows that the capacity fac-
tors are generally largest under weakly stable conditions and
can reach 75 % in the open North Sea. For stable conditions,
capacity factors are considerably lower but also prone to the
bias discussed in Sect. 3.1. The bottom row of Fig. 7 vi-
sualizes the impact of the projected, future wind farm lay-
out if they were all occupied with NREL 5 MW turbines at
8.1 MW km−2. Without subdividing for stability, the absolute
reductions of the full-year capacity factor in the immediate
vicinity of farms located in dense clusters are around 15 %,
with cumulative contributions from multiple wind farms. The
magnitude of the long-term resource reductions is similar to
what other studies have identified in terms of closely spaced
wind farms (Akhtar et al., 2021; Fischereit et al., 2022b).
Very close to the larger farms, larger values can be found
even when the farms are isolated. The absolute and relative
changes in the capacity factor vary over the stability classes.
Absolute capacity factor reductions are typically the small-

est for stable conditions, but these are the largest in relative
terms as capacity factors are small themselves. In weakly sta-
ble conditions, absolute capacity factor reductions are much
higher, as these exceed 13 % over large zones within and out-
side the wind farm clusters and 5 % more than 20 km from
wind farm clusters and larger wind farms.

The impact of the atmospheric stability on the wind-farm-
induced reduction in hub-height wind speed can be anal-
ysed in more detail along the four analysis transects (Fig. 8).
For TR1, TR2 and TR4, the data are dominated by weakly
stable conditions (∼ 65 %) compared to unstable (∼ 19 %)
and stable (∼ 16 %) conditions, whereas for TR3 unstable
conditions are more prevalent (∼ 59 %) compared to stable
(∼ 29 %) and weakly stable (∼ 12 %) conditions. The rel-
ative reductions at the end of wind farms typically exceed
20 % for all stability classes, but reductions are generally
smaller for unstable conditions than for stable and weakly
stable conditions. However, the transects do not show a sig-
nificantly slower wind farm wake recovery for stable condi-
tions, as has been found based on observations (Cañadillas
et al., 2020; Platis et al., 2021). The presented transect anal-
ysis also differs strongly from such studies in that it consid-
ers time averages of different wind speeds and covers a very
large extent with the stability and wind direction criterion
only evaluated at the centre of the transects. Added to that,
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Figure 7. Maps of the modelled North Sea wind climatology at 90 m a.m.s.l., the corresponding wind resource in terms of the capacity factor,
and the resource deficit under the NREL8.1 scenario for the complete year and for the three stability classes. Top: maps of the yearly mean
wind speed (m s−1) under the NOWF scenario. Middle: capacity factor under the NOWF scenario (%). Bottom: absolute capacity factor
deficit for the NREL8.1 scenario (%). White polygons represent wind farm locations. Capacity factor computations are based on the power
curve of the NREL 5 MW wind turbine.

modifications of dynamic stability by wind farms, which has
previously been modelled with LES (Porté-Agel et al., 2014;
Lu and Porté-Agel, 2015), could be strongly enhanced by the
large, non-existent wind farms used in this study. The associ-
ated capacity factor profiles show that the relative impact on
the wind resource is large for all stability classes (Fig. S9).
The forcing by large wind farms and clusters can lead to a
halving of the capacity factor for all stability classes in some
transect sections. The relative impact on the capacity factor
values is much larger than for the mean wind speed, due to
the non-linearity of the turbine power curves (Fig. S3).

The wind farm capacity density used in the different wind
farm simulations strongly determines the mean wind speed
profile along these transects (Fig. 9). In each case, zones of
densely clustered farms (< 20 km apart) are characterized by
the strongest reductions and a limited farm wake recovery
that is typically less than half of the maximum deficit at the

previous wind farm. The scenario with IEA 15 MW turbines
at 3.5 MW km−2 is characterized by the smallest reductions,
which are typically within 1.5 m s−1 at the upwind side of
wind farms. For higher capacity densities, these upwind edge
reductions are often more than twice as large and can ex-
ceed 3 m s−1 under very dense clustering. Only for recovery
distances of 30–60 km, the IEA8.1 and IEA10.0 scenarios
converge to within 0.5 m s−1 of the IEA3.5 scenario. Fur-
thermore, the impact of wind farm size on the intensity of
the reduction can be assessed by focusing on the first wind
farm in each transect: the larger wind farms of TR1, TR3
and TR4 have an along-transect farm length between 24 and
31 km, while this is only 9 km for the one in TR2. The as-
sociated reductions at the downwind edge of the wind farms
are approximately twice as large for TR1, TR3 and TR4 than
for TR2.
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Figure 8. Relative deficit of the along-transect mean wind speed (%) at 90 m a.m.s.l. for the four transects indicated on Fig. 1. This concerns
the NREL8.1 scenario, subdivided in the three dynamic stability classes: unstable (pink), weakly stable (green) and stable (blue) according
to the RB. Wind data are only considered when the wind direction deviates within ±15° from the transect orientation (W to E) at the middle
grid cell of each transect. Grey shadings represent wind farm locations.

Figure 9. Transects of the mean wind speed at turbine hub height for the different wind farm scenarios. These transects correspond to the
four lines in Fig. 1. Wind data are only considered when the wind direction deviates within ±15° from the transect orientation (W to E) at
the middle grid cell of each transect. Grey shadings represent wind farm locations.
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When converting the wind speed information of the
NOWF scenario into capacity factors, the transect averages
are∼ 58 % for TR1, TR2 and TR4 and∼ 38 % for TR3 when
considering the hub height and power curve of the NREL
5 MW turbine. For the IEA 15 MW turbine, these increase
to ∼ 66 % and ∼46%, respectively. Figure 10 shows that the
associated, absolute reductions in these capacity factor fol-
low the general patterns established for the mean wind speed.
In each transect, the IEA3.5 scenario is characterized by the
smallest deficits at the upwind edge of wind farms, typically
around 10 % with larger values in dense clusters. For higher
capacity densities, the upwind edge reductions reach 25 % to
30 % for closely spaced wind farms. The intensity of these
upwind edge reductions is strongly dependent on the degree
of upwind clustering and the sizes of the upwind farms. For
the scenarios with higher capacity densities, the superposi-
tion of the high momentum sink on the already intense farm
wake deficit eventually results in much lower wind farm ef-
ficiencies for these scenarios. For the SW–NE-oriented tran-
sects, the impact of the turbine type becomes apparent: for
the 90 m turbines in the NREL8.1 scenario, the absolute
deficits over the wind farms exceed those of the IEA8.1 sce-
nario, which translates to a much stronger reduction in rela-
tive terms as the unaltered (NOWF) capacity factors for the
5 MW turbines are lower than for the 15 MW turbines.

The wind farm layout in the IEA8.1 scenario is signifi-
cantly more efficient than for the NREL8.1 scenario, as re-
flected in the layout-integrated capacity factor and full load
hours in the evaluation domain (Table 4). As a consequence,
the integrated AEP is 27.4 % higher in the former. This dif-
ference is partly due to the rated wind speed being 0.8 m s−1

lower for the 15 MW turbines so that the rated section of
the power curve is more wide (Fig. S2). Added to that,
taller turbines can take advantage of the wind speed gra-
dient with height, which leads to a larger fraction of wind
speeds in the rated regime and a reduced fraction in the
steep part of the power curve. To disentangle both effects,
the 90 m wind speed data of the NREL8.1 scenario were
fed to the 15 MW power curve, which resulted in an AEP
of 539 TW h. This implies that approximately 40 % of the
increase in AEP can be attributed to the lower rated wind
speed and approximately 60 % to the wind speed gradient
with height. Combining 15 MW turbines with a low capacity
density of 3.5 MW km−2 only reduces the integrated capac-
ity factor from 64.2 % in the NOWF scenario to 51.8 %, as
a consequence of limited intra- and inter-farm wake impacts,
in agreement with Meyers and Meneveau (2012) and Gupta
and Baidya Roy (2021). From IEA3.5 to IEA8.1, the capacity
density increases by 131 %, whereas the AEP only increases
by 82 %. From IEA8.1 to IEA10.0, these increases are 23.4 %
and 13.1 %, respectively. This efficiency degradation when
moving to larger capacity densities can be recognized in
a reduced capacity factor and a reduction in the full load
hours (FLH): compared to IEA3.5, the IEA10.0 capacity fac-
tor is reduced from 51.8 % to 38.2 % and the FLH is reduced

Table 4. Annual energy and power metrics integrated over all wind
farms in the evaluation domain. CF: layout-integrated capacity fac-
tor. FLH: full load hours for the complete layout. AEP: annual en-
ergy production for the complete layout. The calculations are based
on the wind speed data of the wind farm grid cells. The capacity fac-
tors for the NOWF simulation correspond to efficiency in absence
of intra- and inter-farm wakes.

Experiment Turbine Total CF FLH AEP
capacity (%) (h) (TW h)

(GW)

NOWF NREL 5 MW – 56.1 – –
NOWF IEA 15 MW – 64.2 – –
NREL8.1 NREL 5 MW 191 32.7 2549 488
IEA3.5 IEA 15 MW 83 51.8 4136 342
IEA8.1 IEA 15 MW 191 41.4 3252 622
IEA10.0 IEA 15 MW 236 38.2 2981 704

by approximately 1150 h. This follows from the increased
wake losses that are further exacerbated by the densely clus-
tered layout and the presence of several large wind farms
that are typically characterized by very low power densities
(Volker et al., 2017).

4 Conclusions

We have used the regional climate model COSMO-CLM
to quantify the dependence of long-term, cluster-scale wake
losses on the turbine type, capacity density, wind farm spac-
ing and wind farm size for a hypothetical future wind farm
layout. First, the model skill in simulating the wind climate
was evaluated in a comparison with in situ, lidar and satellite
data, which revealed the following.

– The differences between the measured and modelled,
long-term mean wind speed at turbine hub height (∼
100 m) are generally within the measurement uncer-
tainty. This is also the case for differences at higher
altitudes (up to 290 m), but closer to the surface
COSMO-CLM underestimates the mean wind speed (∼
−0.5 m s−1). Under stable stratification (∼ 25 %), the
model underestimates the long-term mean wind speed
at turbine height but not under weakly stable and unsta-
ble stratification (∼ 75 %).

– The agreement between the measured and modelled,
long-term wind speed histograms is high, with a PSS
above 95 % in most cases. The theoretical capacity fac-
tors derived from these histograms agree well overall,
but small underestimations (∼ 1 %–5 %) are present at
some locations.

– The agreement with the wind speed measurements is
consistent over the different years of the simulation pe-
riod as inter-annual variations in the mean wind speed
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Figure 10. Transects of the absolute capacity factor deficit at hub height for the different wind farm scenarios. These transects correspond to
the four lines in Fig. 1. Wind data are only considered when the wind direction deviates within ±15° from the transect orientation (W to E)
at the middle grid cell of each transect. Grey shadings represent wind farm locations.

difference and the PSS are small. The seasonal variabil-
ity in the shape and location of the wind speed distribu-
tion is also captured by COSMO-CLM.

– Multi-year histograms of wind direction also agree well,
with again a PSS above 95 % in most cases. The vari-
ation of the wind speed histograms over 12 directional
bins (30°) is also adequately captured in the model. This
encourages the application of COSMO-CLM to wind
farm modelling as wind farm shapes are adapted to the
regional wind climate.

As deviations mainly occur under stable conditions, a
stability-dependent bias correction could be considered for
future applications in addition to continuous efforts to im-
prove the model. Overall, this evaluation emphasizes the
value of having a large set of wind measurements available
in regions for offshore wind farm development, as it allows a
benchmarking of mesoscale models over the region of inter-
est.

The application of the model to a hypothetical, future wind
farm layout indicates that the creation of dense wind farm
clusters is accompanied by an alteration of the surrounding
wind climate and significant farm-to-farm wake interactions.
The impact of these interactions depends heavily on the tur-
bine type, the capacity density, the inter-farm spacing and
the size of the wind farms. In this study, the comparison of
two turbine types (NREL 5 MW and IEA 15 MW) and three
capacity densities (3.5, 8.1 and 10 MW km−2) show the fol-
lowing.

– For a capacity density of 8.1 MW km−2, the layout-
integrated AEP is ∼ 27 % larger for a layout of 15 MW
turbines than for 5 MW turbines. This difference is
linked to the layout-integrated capacity factor being
considerably larger when using taller, 15 MW turbines
because of the increase in the wind resource with height
(60 %) and a lower rated wind speed (40 %). The use of
15 MW turbines compensates for ∼ 37 % of the wake
losses recorded in the NREL8.1 simulation.

– Under dominant wind directions with dense wind farm
clustering, the wind resource is strongly reduced due to
inter-farm wakes. Assuming 15 MW turbines, the abso-
lute reductions in the capacity factor at the upwind edge
of wind farms range from 3 % to 17 % for a capacity
density of 3.5 MW km−2 depending on the degree of
clustering and the size of the upwind farms. For a ca-
pacity density of 8.1 MW km−2 this ranges from 5 % to
30 % and for 10 MW km−2 from 5 % to 33 %.

– Assuming a projected, future wind farm layout with
15 MW turbines, increases in the capacity density of
the wind farms lead to strong efficiency reductions. The
layout-integrated capacity factor reduces from 51.8 %
for a 3.5 MW km−2 capacity density to 38.2 % for a
10 MW km−2 capacity density, due to the intensification
of intra- and inter-farm wake losses.

– Wind farm wake effects play an important role for all
considered atmospheric stability classes, even if the im-
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pact is a bit smaller for unstable conditions. Under
strongly waked wind directions, the low capacity factors
(20 %–30 %) under stable conditions (RB > 0.25) can
be further reduced to well below 10 %, thereby nearly
completely halting the production of some of the sim-
ulated wind farms. Although these results are possibly
impacted by the negative model bias that was found for
stable stratification, it is expected that this large impact
under stable conditions still holds.

Whereas comparisons between wind farm parametrizations
have shown large variations in terms of modelled wind speed
deficits inside and behind wind farms (Ali et al., 2023), val-
idation efforts in several mesoscale models have indicated a
very good performance of the Fitch WFP (Fischereit et al.,
2022c; van Stratum et al., 2022; Ali et al., 2023). Nonethe-
less, the use of other WFP schemes might significantly al-
ter the magnitudes presented here, more so due to the large
clusters and large wind farms included in the considered lay-
out, which can even lead to wake losses for background wind
speeds well above rated. Hence, further benchmarking stud-
ies of WFPs for a range of atmospheric conditions and val-
idation data could help in further reducing this WFP-related
uncertainty. An additional complication here is that this study
includes wind farms of non-existent sizes for which valida-
tions simply do not exist.

Even if the mesoscale wind farm parametrization approach
has limitations, these modelling studies provide valuable in-
formation for the efficient deployment and operation of off-
shore wind infrastructure, more so because mesoscale mod-
els can consider the climatic variability of wake effects, for
large regions. This study demonstrates the potential of this
modelling approach to explore a large variety of wind farm
characteristics and layouts in a climatic context, which can
aid in a more efficient expansion of the offshore infrastruc-
ture.
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Appendix A

Table A1. Description of the in situ measurement stations. S: wind speed (m−1);D: wind from direction (°). The superscripts a, b and c link
measurement heights to measurement devices in the next column. 1×, 2× and 3× refers to one, two, or three anemometers and/or wind vanes
at one measurement height. Source acronyms: KDP, Royal Netherlands Meteorological Institute (KNMI) data platform; MNVB, Meetnet
Vlaamse Banken; MDE, the Marine Data Exchange; FINO, Forschungsplattformen in Nord- und Ostsee; TNO, Nederlandse Organisatie
voor Toegepast-natuurwetenschappelijk Onderzoek.

Name (abbreviation) Location Heights (m a.m.s.l.) Measured variables Period Uncertainty Source
(%)

Westhinder (WH) platform 26 2× S,D 2008–2020 5.6 MNVB
Wandelaar (WA) measuring pole 26 2× S, 1×D 2013–2020 3.3 MNVB
Scheur-Wielingen (SW) measuring pole 25 1× S,D 2010–2020 3.3 MNVB
Oosterschelde (OS) measuring pole 17 2008–Jun 2019 3.3 KDP
Vlakte van de Raan (VVDR) measuring pole 17 Sep 2009–Jun 2019 3.3 KDP
Lichteiland Goeree (LEGO) platform 38 2× S,D 2008–2020 3.3 KDP
Europlatform (EPL) platform 29 2× S,D 2008–2020 3.3 KDP
Ijmond (IJM) measuring pole 17 2008–Jun 2019 3.3 KDP
P11-B (P11B) mast on platform 51 2× S,D 2010–2020 5.6 KDP
Meteomast IJmuiden (MMIJ) meteorological mast 27, 58a, 92b a : 3× S,D, b : 2× S Nov 2011–Mar 2016 a : 1.9; b : 1.5 TNO
K13A (K13) mast on platform 74 2× S,D 2008–2019 3.3 KDP
F3N (F3) mast on platform 60 2x× S,D 2010–Dec 2019 3.3 KDP
Huibertgat (HGT) measuring pole 18 2008–Jun 2019 3.3 KDP
AWG-1 (AWG1) mast on platform 60 2× S,D Sep 2009–2020 5.6 KDP
FINO1 (FINO1) meteorological mast 51, 71, 91a, 102b a : 1× S,D; b : 1× S 2008–Jul 2009 a : 1.9; b : 1.5 FINO
FINO3 (FINO3) meteorological mast 50, 70, 90, 100a, 107b a : 3× S,D; b : 1× S 2009–Oct 2014 a : 1.9; b : 1.5 FINO
Humber Gateway (HGW) meteorological mast 34, 52, 70, 88a, 68b, 90c a : 2× S; b : 1×D; c : 1× S Oct 2009–Jul 2011 a : 3.7; c : 1.5 MDE
Greater Gabbard (GG) meteorological mast 42, 52, 72, 82a, 62b, 88c a : 2× S; b : 2×D; c : 1× S 2008–2010 a : 3.7; c : 1.5 MDE
London Array (LA) meteorological mast 20, 32, 57a, 29, 78b, 82c a : 2× S; b : 1×D; c : 1× S 2008–2010 a : 3.7; c : 1.5 MDE

Table A2. Description of the lidar measurement stations. Source acronyms: RVO, Rijksdienst voor Ondernemend Nederland; TNO, Neder-
landse Organisatie voor Toegepast-natuurwetenschappelijk Onderzoek.

Name (abbreviation) Type Location Heights (m a.m.s.l.) Period Uncertainty Source
(%)

Borssele 1 (BO) Zephir 300S buoy 40:20:200 Jun 2015–Feb 2017 3.3–3.4 RVO
Lichteiland Goeree (LEGO) Leosphere Windcube platform 90:25:290 and 63 Nov 2014–2020 2.6–3.3 TNO
Europlatform (EPL) Zephir 300S platform 91:25:291 and 63 May 2016–2020 2.9–3.5 TNO
Meteomast IJmuiden (MMIJ) Zephir 300S platform 90:25:290 Nov 2011–Mar 2016 2.5–3.1 TNO
K13A (K13) Zephir 300S platform 91:25:291 and 63 2018–2020 2.7–3.2 TNO
TNVD Waddeneilanden A (TNW) Zephir 300S buoy 40:20:200 Sep 2019–2020 3.3–3.4 RVO

Code and data availability. The code and data used to
generate Figs. 3–10 can be retrieved as one dataset at
https://doi.org/10.5281/zenodo.8348700 (Borgers, 2023). The
ERA5 reanalysis data used to identify representative wind
years were downloaded via the Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) and can be found at
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2022). The
ASCAT data were retrieved from the Copernicus Marine Service via
https://doi.org/10.48670/moi-00183 (Copernicus Marine Service,
2022). The in situ measurements of the KNMI can be retrieved from
their data platform, at https://dataplatform.knmi.nl/group/wind
(Koninklijk Nederlands Meteorologisch Instituut, 2022). For the in
situ data at the Belgian coast, data are accessible via the website of

the Belgian coastal measurement network, at https:
//meetnetvlaamsebanken.be/ (Meetnet Vlaamse Banken,
2022). Mast data at the coast of the United Kingdom are
available via the website of the Marine Data Exchange, at
https://www.marinedataexchange.co.uk/ (The Crown Estate,
2022). For the German Bight, the data are available at the
website of the FINO data platform, http://fino.bsh.de/ (Das
Bundesamt für Seeschifffahrt und Hydrographie, 2022). Data
from the IJmuiden meteorological mast and from the platform-
mounted wind lidars can be found at the TNO data cloud
website https://nimbus.windopzee.net/ (Nederlandse Organ-
isatie voor toegepast-natuurwetenschappelijk onderzoek, 2022).
Finally, the data from the buoy-mounted lidars can be found
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at https://offshorewind.rvo.nl/ (Rijksdienst voor Ondernemend
Nederland, 2022).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/wes-9-697-2024-supplement.
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Accelerating deployment 
of offshore wind energy alter wind 
climate and reduce future power 
generation potentials
Naveed Akhtar*, Beate Geyer, Burkhardt Rockel, Philipp S. Sommer & Corinna Schrum

The European Union has set ambitious  CO2 reduction targets, stimulating renewable energy 
production and accelerating deployment of offshore wind energy in northern European waters, 
mainly the North Sea. With increasing size and clustering, offshore wind farms (OWFs) wake effects, 
which alter wind conditions and decrease the power generation efficiency of wind farms downwind 
become more important. We use a high-resolution regional climate model with implemented wind 
farm parameterizations to explore offshore wind energy production limits in the North Sea. We 
simulate near future wind farm scenarios considering existing and planned OWFs in the North Sea 
and assess power generation losses and wind variations due to wind farm wake. The annual mean 
wind speed deficit within a wind farm can reach 2–2.5  ms−1 depending on the wind farm geometry. 
The mean deficit, which decreases with distance, can extend 35–40 km downwind during prevailing 
southwesterly winds. Wind speed deficits are highest during spring (mainly March–April) and lowest 
during November–December. The large-size of wind farms and their proximity affect not only the 
performance of its downwind turbines but also that of neighboring downwind farms, reducing the 
capacity factor by 20% or more, which increases energy production costs and economic losses. We 
conclude that wind energy can be a limited resource in the North Sea. The limits and potentials for 
optimization need to be considered in climate mitigation strategies and cross-national optimization of 
offshore energy production plans are inevitable.

The increasing demand for carbon–neutral energy production has fostered the rapidly increasing deployment of 
offshore wind farms (OWFs). The construction of OWFs is generally 1.5–2 times more expensive than onshore 
wind  farms1. Additionally, their maintenance/repair, power network, and obtaining observational data for optimi-
zation are more challenging and  costlier2. Although OWFs are more expensive in construction and maintenance 
than onshore wind farms, these costs are offset to some extent by the higher capacity factor (CF) of OWFs due to 
the strength of offshore wind  resources3. About 10 km off the coast, sea surface winds are generally 25% higher 
than onshore winds. These high offshore wind resources can be utilized 2–3 times longer to generate electricity 
than onshore wind farms in the same period of  time4,5. Europe’s total installed OWF capacity reached 22 GW in 
2019; of that capacity, 77% is installed in the North  Sea6. As part of the ambitious plans of the EU to reach climate 
neutrality a significant increase to 450 GW total offshore wind energy capacity is intended by  20507. About 47% 
(212 GW) of these will be installed in the North Sea at an annual consenting rate of 8.8 GW per year during the 
 2020s8. This implies that the North Sea forms one of the worldwide hotspots of OWF development. Figure 1 
shows the planning status of OWFs in the North Sea by  20199. These massive developments are motivated by 
the strong and reliable wind resources in the North Sea at shallow water depths. 

Wind farms are usually clustered around transmission lines to minimize deployment and operating costs. 
Hence, in addition to the quality of wind resources also the transmission lines determine whether a location is 
optimal for a wind farm. Despite the considerable availability of wind resources, evidence suggests that wake 
effects, which manifest as a downwind reduction in wind speed, can undermine the potential of cost-efficient 
wind energy  production10–12. The efficiency limits that can arise from clustering and the overall regional satura-
tion might limit the offshore wind energy production. These important questions at regional and longer times 
scales remain yet unassessed and need detailed scientific analysis for an efficient climate mitigation strategy. 
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Additionally, in order to develop the OWFs efficiently and accurately, a comprehensive evaluation of the wind 
resources is required.

Wind turbines extract kinetic energy (KE) from the atmosphere and convert part of that energy into electric 
power. The remaining part of the energy is converted into turbulent kinetic energy (TKE); that generates wakes 
(downwind wind speed deficits)13–17. Airborne observations show that TKE is significantly increasing (factor of 
10–20) above the wind  farms17. These observations also show that wind farm wakes can extend up to 50–70 km 
under stable atmospheric  conditions18. These wakes further impact the efficiency of downwind wind farms 
through changes in the temperature and turbulence in the boundary  layer19. At a given wind speed, colder and 
denser air masses provide more energy than warmer and lighter air masses. Moreover, atmospheric turbulence 
additionally reduces the energy output and increases the load on wind farm structures and  equipment19. Obser-
vational evidence shows that wakes can increase the temperature by 0.5 °C and humidity by 0.5 g per kilogram at 
hub height, even as far as 60 km downwind of wind  farms20. Case studies related to wake dynamics have largely 
been limited to single wind  turbines21,22 and/or individual wind  farms23–26. Only a few studies have analyzed the 
wake effects caused by neighboring wind  farms11,25,27. In a recent  study11, the authors highlighted the economic 
losses suffered by onshore downwind wind farms due to the wake effects of upwind wind farms. Estimates of the 
wake effects on power production and environmental changes have been limited to short timescales (on the order 
of a few days or to a specific  year28) and only one or two wind farms. The aforementioned studies emphasize the 
need to better understand the physical and economic interactions of large wind farms with complex clustered 
layouts (such as those planned in the North Sea) to ensure the efficient utilization of wind energy resources.

Building on process understanding of case studies, we assess for the first time the wake effect on the power 
production of both existing and planned large OWFs on a regional scale for the North Sea over a period of 
10 years. It allows us to take into account the natural variability in wind climate, as inter-annual variability plays 
an important role in wind  energy29. We perform two high-resolution numerical scenario simulations for a multi-
year simulation period, one considering existing and currently planned OWFs in the North Sea and one for the 
undisturbed atmosphere. For the future scenario simulation, we apply a generic wind farm parameterization 
considering energy extraction and turbulence effects using a standard wind farm configuration, which we validate 

Figure 1.  Distribution of OWFs in the North Sea (4c Offshore. https:// www. 4coff shore. com/ windf arms/, 2019). 
Colors indicate the planning status of the OWFs by 2019. This map was created by Ulrike Kleeberg with ArcGIS 
Pro 10.7 (ESRI Inc. ArcGIS Pro 10.7, 2019).
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against earlier published high-resolution  observations30 to ensure the realism of the scenario simulation. Mean 
wind changes will be analyzed and efficiency loss in offshore energy production will be estimated in terms of the 
Capacity Factor (CF) deficiency. Given the ongoing development of OWFs in the North Sea, our study highlights 
the urgent need to consider feedbacks between existing and planned OWFs to assess physical and economic 
impacts to optimize planning and to assess the limits and environmental impacts of industrial offshore energy 
production. To the best of our knowledge, this is the first study to estimate the wind speed deficits due to OWF 
production at a basin-wide scale covering a multi-year period and to investigate the effect of these deficits on 
the CF of wind farms. Furthermore, in this study, we evaluated the wind farm parameterization for real case 
simulations against the observations.

Experimental design
All existing and planned OWFs by  201531 in the North Sea area (see Fig. SI 1, the latest planning status is shown 
in Fig. 1) are considered for the scenario simulations. We focus on the Central and Southern North Sea where 
OWFs are planned close to each other. The scenario simulations are carried out for a multi-year period from 2008 
to 2017, to account for a range of different weather conditions to assess the impact of large-scale OWF devel-
opment on the production potential of wind farms. For the numerical simulations, we use the high-resolution 
Consortium for Small-Scale Modeling (COSMO)-CLimate Mode (CLM) regional climate model (RCM)32 both 
without and with a wind farm parameterization. An existing wind farm  parameterization15,16,33,34 for a standard 
turbine size has been implemented into COSMO-CLM to include the effects of wind farms; these RCM simula-
tions provide us with high-resolution spatiotemporal estimates of the wind speed over wind farm areas. A CF 
 model35 has been used to assess the average energy production of wind farms based on wind speed. Several 
factors can influence the CF, such as the wake effect, turbine efficiency, and offshore  distance36. For the inter-
comparison of scenario simulations, we consider the impact of wakes on the CF, to illustrate the potential impact 
of feedbacks between wind farm deployment and regional atmospheric conditions. Hereafter, “CCLM_WF” and 
“CCLM” refer to the COSMO-CLM simulations with and without a wind farm parameterization, respectively.

Verification of the simulated wind fields and OWFs wakes
Comparison with the point observations of wind fields. To verify the realism of our scenario simula-
tion, a detailed validation against published  data30,37 was performed. The simulated wind characteristics over the 
North Sea can be directly evaluated using data from the research  platforms37 FINO1 (6.5875°E, 54.01472°N) and 
FINO3 (7.158333°E, 55.195°N) starting in 2004 and 2009, respectively. The high quality of the mast-corrected 
measurement data allows for a detailed analysis of both the wind speed and the wind direction. Here we com-
pared the FINO1 and FINO3 measurements with CCLM simulations for the period 2008–2009 and 2009–2014 
respectively to avoid the effects of the OWF Alpha Ventus and DanTysk on the mast  measurements38. The annual 
and seasonal probability density functions (PDFs) derived from hourly values of the wind speed and wind direc-
tion are in good agreement with the FINO1 data (Fig. 2). The annual and seasonal biases, root mean square error 
(RMSE), correlation coefficients, and Perkins’ score (PS)39 calculated between the CCLM simulation results 
and observations (FINO1 and FINO3) are presented in Tables 1 and 2. Compared with the FINO1 data, the 
CCLM winds show small, mostly negative biases of 0.27  ms−1 with simulated wind speeds that are lower than the 
observed wind speeds. During the spring and summer season model bias become stronger, along with higher 
RMSE values (Table 1). The autumn correlations of 0.87 are slightly higher than those in the other seasons. 
The PS of the yearly mean simulated wind speed is 0.95, with the highest values during winter (0.92) and the 

Figure 2.  Annual and seasonal probability density functions calculated using the hourly (a) wind speed and (b) 
wind direction data at FINO1 (6.5875°E and 54.01472°N) at a height of 90 m in the period 2008–2009. Dashed 
lines result from measurements, while solid lines are from COSMO-CLM simulation. Gray lines indicate data 
for the entire period whereas colors indicate the different seasons as given in the legend.
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lowest values during summer (0.79). The simulated CCLM wind direction PDFs are also well represented; the 
prevailing southwesterly (200°–280°) wind directions are effectively captured (Fig. 2). On average, the CCLM-
simulated wind directions show a positive bias of 3.07°, a small counterclockwise shift with an RMSE of 70.11° 
and a correlation coefficient of 0.71 (Table 1). Again, the simulated summer values show larger deviations from 
the observations with a bias of 8.08° and an RMSE of 72.18°; in addition, the correlation coefficient is lower 
than those in the other seasons. The simulated wind direction shows the highest PS during winter (0.88) and 
the lowest PS during spring (0.77) with a yearly value of 0.92. The simulated wind direction relative to FINO3 
shows a negative bias of − 6.34°, an RMSE of 67.01°, a correlation coefficient of 0.75, and a PS of 0.93 (Table 2). 
Studies show that the existing wind farms in the North Sea are already affecting the wind field reaching FINO1 
and  FINO338. A comparison of the wind speed and direction between CCLM_WF and FINO1 shows that the 
construction of planned wind farms will further affect their measurements in the future (Fig. SI 2). The annual 
and seasonal probability density functions (PDFs) derived from hourly values of the wind speed and wind direc-
tion are also in good agreement with the FINO3 data (Table 2 and Fig. SI 3).  

Wake effects in case studies: evaluation of CCLM. For the sake of completeness, CCLM_WF has been 
evaluated against airborne campaign  data18 to illustrate the ability of CCLM_WF to simulate upwind flow and 
the spatial extent of wakes generated by wind farms. Here, we choose two different cases. In the first case, we 
evaluate the wake extent of the Amrumbank West wind farm; in the second case, we evaluated the wind speed 
deficit over the two Godewind farms. Only operational wind farms at the measurement times are considered in 
these simulations. Figure SI 4 shows the model domain and the wind farm locations.

Case 10 September 2016. A detailed comparison is performed for the wakes observed downwind of the 
Amrumbank West, Meerwind SüdOst, and Nordsee Ost wind farms with model simulations. The wake was 
measured during an aircraft campaign on 10 September 2016 between 0800 to 1100 UTC using five flight legs of 
5 km, 15 km, 25 km, 35 km, and 45 km downwind of the Amrumbank West wind  farm18,30. Stable atmospheric 
conditions and a wake extent of at least 45 km were measured. The installed turbines in Amrumbank West have a 
90 m hub height and 120 m rotor  diameter12. For this experiment, we employ only those wind farms which were 
existing at the time of measurements (see Fig. SI 4).

The simulated spatial extent of the wake agrees well with the measurement. Figure 3 shows the wake extents 
simulated in CCLM_WF (interpolated on the aircraft track) and airborne observations (see Fig. SI 5a for a 
complete snapshot of the wind speed field simulated in CCLM_WF and its difference from the observation). 
Both the observations and the simulations show a wake extending more than 45 km downwind of the wind farm. 
The simulation shows that the wake reached down to the Butendiek wind farm, located 50 km downwind of 
the Amrumbank West wind farm. However, the simulated wind direction is slightly rotated counterclockwise. 
Similar to the width of the wind farms, the wake width is approximately 12 km at the beginning, which expands 
and weakens as the distance increases from the generating wind farm. The transect of the simulated and observed 
wind speeds through the first flight leg of 5 km downwind of the wind farm shows that the simulated-observed 

Table 1.  Yearly and seasonal mean wind speed and wind direction bias (CCLM – FINO1), root mean square 
error (RMSE), correlation (CORR), and Perkin’s score (PS) of CCLM compared with FINO1 in the period 
2008–2009.

Bias RMSE CORR PS

WS  (ms−1) WD (°) WS  (ms−1) WD (°) WS WD WS WD

Yearly − 0.27 3.07 2.81 70.11 0.79 0.71 0.95 0.92

DFJ − 0.08 1.44 3.41 64.61 0.73 0.71 0.92 0.88

MAM − 0.34 1.21 2.54 76.53 0.82 0.72 0.85 0.77

JJA 0.40 8.08 2.73 72.18 0.72 0.67 0.79 0.80

SON − 0.25 1.40 2.49 65.89 0.87 0.73 0.91 0.87

Table 2.  Yearly and seasonal mean wind speed and wind direction bias (CCLM – FINO3), root mean square 
error (RMSE), correlation (CORR), and Perkin’s score (PS) of CCLM compared with FINO3 in the period 
2009–2014.

Bias RMSE CORR PS

WS  (ms−1) WD (°) WS  (ms−1) WD (°) WS WD WS WD

Yearly − 0.39 − 6.34 2.59 67.01 0.85 0.75 0.95 0.93

DFJ − 0.54 − 7.95 2.60 55.91 0.87 0.81 0.92 0.88

MAM − 0.40 − 9.12 2.55 70.32 0.84 0.77 0.73 0.80

JJA − 0.30 − 0.45 2.72 79.92 0.75 0.63 0.62 0.78

SON − 0.37 − 7.99 2.50 58.11 0.85 0.79 0.81 0.89
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differences are smaller inside the wake than outside (Fig. SI 5b). In general, the model slightly underestimates 
the wind speed compared to the observations.

Case 14 October 2017. In the chosen case, we evaluate the wind speed at a height of 250 m over Godewind 
farms 1 and 2 with aircraft observations. The installed turbines in these wind farms have a 110 m hub height and 
153 m  diameter18. For this experiment, we employ the wind farm location data as in Fig. SI 4; however, we used 
the turbine dimensions as installed in Godewind farms.

Figure 4 shows the wind speeds at 1500 UTC on 14 October 2017 over the Godewind farms simulated in 
CCLM_WF (interpolated on the aircraft track) and observed wind speeds (see Fig. SI 6a for a complete snapshot 
of the wind speed field simulated in CCLM_WF and its difference from the observation). Stable atmospheric 
conditions were observed at the times of the  measurements18. An observed speed-up around the wind farms 
is well reproduced in the simulations. The simulated wind speeds agree better with the observations inside the 
wake than outside (Fig. SI 6b).

Due to the relatively coarse horizontal resolution of RCMs (1–2 km), the effects of individual wind turbines 
(with a rotor span of 120 or 153 m) cannot be fully resolved. Therefore, the simulated wake effects of the wind 
turbine can be underestimated, and thus, the wake effects of wind farms can be underestimated. In the present 
wind farm  parameterization16, the power produced by the wind turbine depends on the wind speed in the grid 
cell at the model level interacting with the rotor. The wind turbine removes momentum from the rotor-interacting 
layers to produce the power that leads to wind speed deficits in downwind grid cells.

The evaluation results show that COSMO-CLM with a wind farm parameterization realistically reproduces 
the effects of wind farms. The spatiotemporal variability of the wake effects and their impact on the CF of the 
wind farms at 90 m hub height are analyzed for the period 2008–2017 in the following sections.

Wake effect on wind speed and turbulent kinetic energy
Our simulations show that the development of massive clustered OWFs significantly impacts the wind climate 
and efficiency of renewable energy production on a regional scale. The reduction in the annual mean wind speed 
reaches up to 2–2.5  ms−1 during prevailing southwesterly (200°–280°) winds, and that in the seasonal mean 
reaches more than 3  ms−1 (see Fig. 5 and Figs. SI 2 and SI 8).

The wind speed in the North Sea exhibits strong spatial and temporal variability. At 90 m hub height, the 
wind speed varies seasonally, with a minimum of approximately 7–8.5  ms−1 in summer and a maximum of 
10–11.5  ms−1 in winter (Fig. SI 7). The presence of a wind farm impacts the boundary layer flow over the wind 
farm and its vicinity by extracting KE from the mean flow and generating TKE. The highest wind speed deficit in 
the annual mean is about − 18%, and the increase in TKE is nearly a factor of 4 over the wind farm itself (Fig. 6). 
These changes in wind speed and TKE extend vertically to a height of approximately 500 m (about 350 m above 
the turbine height). A deficit/raise of about 1  ms−1/0.6  m−2  s−2 in wind speed/TKE extends to a height of approxi-
mately 200 m. The maximum change in wind speed and TKE found in the atmospheric levels between the hub 
(90 m) and tip height (153 m) of the wind turbines. The change in the wind speed and TKE above the turbine 
height is consistent with the previous  studies16,40,41. The wind speed deficits are higher during spring (− 22%) 
and summer (− 20.8%) than during the other seasons (see also Fig. SI 8), the reason for which is explained later 
in this section. The increase in the TKE is found higher during winter (factor of 3.2) and autumn (factor of 3.8). 
The addition TKE source in the wind farm parameterization improves the representation of mixing and wind 
speed deficit during stable  conditions17. The change in wind speed and TKE increases the boundary layer  height16.

Figure 3.  Wind speed at 90 m hub height (a) simulated in CCLM_WF and (b) observed by aircraft 
measurements. The aircraft track (gray lines) shown here ranged from 0820 to 0924 UTC on 10 September 2016. 
The model simulations show the wind speed at 0900 UTC.
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Figure 4.  Wind speed at a height of 250 m (a) simulated in CCLM_WF and (b) observed by aircraft 
measurements. The aircraft track shown here ranged from 1445 to 1500 UTC on 14 October 2017. Arrow 
indicates the wind direction. The model simulations show the wind speed at 1500 UTC.

Figure 5.  Annual mean wind speed deficits (CCLM_WF – CCLM) outside and inside the wind farms for 
the prevailing wind directions of 200°–280° at hub height (90 m) in the period 2008–2017. Numbered gray 
lines indicate the transects used for calculations of Fig. 8 and Fig. SI 6 and SI 7. This figure was created with 
Matplotlib (Hunter, J. D., Matplotlib: a 2D graphics environment. Computing in Science and Engineering 
9, 2007) and Cartopy (Met office, Cartopy: a cartographic python library with a matplotlib interface. Exeter, 
Devon, https:// scito ols. org. uk/ carto py, 2015).
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Wakes, i.e., downwind reductions in wind speed, exhibit significant spatial variability inside and outside wind 
farms (Fig. 5). The wind speed deficit inside a wind farm increases with increasing distance from the upstream 
edge, reaching a maximum of 2–2.5  ms−1. In an idealized numerical study, a maximum reduction of approxi-
mately 16% in the wind speed and increase in TKE by nearly a factor of 7 was estimated at hub height over a 
10 × 10 km wind  farm16. Here we used a realistic climate set up to study a scenario with clustered and large-scale 
wind farms and found larger mean wind speed deficits of approximately 18–20% of the annual mean wind. In 
our case, the increase in the mean TKE within the wind farm is almost a factor of 3 less than that reported (fac-
tor of 7) in the idealized  study16. This could be due to the reason that mean values of TKE over a longer period 
2008–2017 are shown here.

The wind farm induced boundary layer mixing, air friction, turbulence and weaken stratification effects within 
and above the rotor area that reach about 600 m. The maximum differences are found in the layers between 
the hub and tip height of the turbine. The reduction in the wind speed extends highest during spring when 
the atmospheric conditions are generally stable. The increase in TKE leads to the mixing of more momentum 
from  aloft15,24. This mechanism is more pronounced during winter and autumn when atmospheric conditions 
are generally unstable in the North Sea. The strength of the TKE depends on the difference between the power 
coefficient and thrust coefficients which varies with the wind speed.

The wakes forming downwind extend over large distances and influence the wind climate at surrounding 
wind farms. The wake extends varies, it depends on wind speed and atmospheric stratification and might extend 
up to 70 km  downwind11,18,20. On average wakes extend ca 40–45 km downwind (Fig. SI 8).

Implications for the CF
The downwind speed reduction results in a significant decrease in the efficiency of energy production here illus-
trated in terms of the CF. The wake induced decrease in CF up to 22% in the annual mean and up to 26% for the 
seasonal mean with the highest values at the downwind edge within the wind farms during southwesterly wind 
directions (see Fig. 7 and Figs. SI 4 and SI 5). Outside of the wind farms, these values decrease as the distance 
from the wind farms is increasing. A decrease of about 1% has been noted at a distance of 35–40 km in annual 
means during southwesterly wind directions. The highest drops are observed for the large wind farms in the 
German Bight and the UK’s Dogger Bank for southwesterly wind directions (Fig. 7).

Without the wind farms, the annual mean CF for all wind directions varies spatially in the North Sea from 50 
to 62%, with higher values during winter (65–70%) and lower values in summer (37–50%, Fig. SI 9). These values 
are strongly reduced in the areas where the large-size wind farms are clustered. The mean wind speed deficits 
and CF losses for all wind directions show that the wake effect extends more towards the northeast than in the 
other wind directions, indicating the dominance of southwesterly winds (Fig. SI 8 and Fig. SI 10).

A more specific analysis of the implications of large wind farm clusters and extremely large farms for the 
efficiency of neighboring farms and clusters in the area of the German Bight and the Dogger Bank (Fig. SI 1) 
highlights substantial CF losses. Figure 8 shows the annual and seasonal mean wind speed deficits and CF losses 
through the wind farms on two of the transects (gray lines I and III) shown in Fig. 5 in the case of prevailing 
winds in the German Bight and the UK’s Dogger Bank. The wind farms in both of these areas are large and are 
located spatially close to each other. These transects show the strong horizontal influences of the wind farms 
together with the reductions in the wind speed and CF. Mean CF and wind speed show characteristic patterns 

Figure 6.  Annual and seasonal mean vertical profiles of the wind speed (left) and turbulent kinetic energy 
(right) simulated by CCLM (broken dotted lines) and CCLM_WF (solid dotted line) over the wind farm areas 
in the period 2008–2017. Solid circles indicate the model levels. The horizontal solid gray line indicates the hub 
height (90 m) of the turbine whereas dotted gray lines indicate lower (27 m) and upper (153 m) tip of the rotor.
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along transects crossing several wind farms (Fig. 8). The wind speed deficit, being higher towards the downwind 
wind farm edge, leads to an annual reduction of up to 25% in the CF of downwind wind turbines inside wind 
farms; outside these wind farms, the CF losses reach up to 20% depending on the size of the farm and distance 
away from it. For example, as shown in Fig. 8a, wind farm 2, which is 7 km from wind farm 1, suffers a mean 
wind speed deficit of 1–1.5  ms−1. This reduces the CF of upwind turbines by 10–15% and that of downwind 
turbines by 15–20% in wind farm 2. Then, the wakes generated by wind farm 2 extend up to wind farm 3 (25 km 
away) with a deficit of 0.5–0.8  ms−1 and CF losses of 5–8%. The wake effect of wind farm 4 reaches up to 30 km. 
The wind speed between wind farms 1 and 2 recovers approximately 45% in 5 km. However, the recovery of the 
wind speed in the following wind farms is slow due to the accumulated effects. Similarly, as shown in Fig. 8b, the 
wake effect reaches approximately 33 km between wind farms 2 and 3 and approximately 28 km beyond wind 
farm 5. The wake generated by the wind farm 4 reduces the CF of wind farm 5 (17 km away) up to 12%. Due to 
the short distance between wind farms 3 and 4 (about 5 km), wind farm 4 receives about 1.5–2  ms−1 less wind 
speed which is equivalent to CF losses of 12–16%, during prevailing southwesterly winds. The transects of lines 
II and IV are shown in Fig. SI 11. The most productive wind turbines/farms are those located on the grid-cells 
at upwind edge/farms of the wind farms where the wind flow is  uninterrupted25.

The wake effect can substantially influence the economic potential of wind power generation within a cluster, 
in large farms, and in neighboring farms located at a distance within the wake. Annual mean wind speed defi-
cits of 1–1.5  ms−1 and CF deficits of wind farms in the vicinity of large downwind clusters are frequent, within 
clusters, the reduction is even stronger and amounts up to a seasonal mean wind speed reduction of more than 
3  ms−1 or a seasonal CF reduction of up to 25% (Fig. 8). Average wakes extend up to 40 km for the largest wind 
farms and clusters.

The highest wind speed deficits occur during the spring season which leads to the highest CF losses in these 
seasons. On a monthly timescale, the highest wind speed deficits are simulated in March and April, whereas the 
lowest deficits are simulated in November and December (see Fig. SI 12). The seasonal variations in wind speed 
deficits are related to the relatively stronger winds (see Fig. SI 12) and weaker  stratification42 during the autumn 
and winter seasons compared to the spring seasons. During spring, the atmospheric conditions are more stable 
than the other seasons which leads to longer  wakes18,42–44. It implies that the most productive season is winter 
when the wind speed is higher and the stratification not stable.

Discussion and conclusions
The results show that the wind fields simulated by the regional climate model COSMO-CLM are in good agree-
ment with the mast measurement stations FINO1 and FINO3 in the North Sea. It also indicates that the deploy-
ment of large wind farms near the mast measurement stations will affect their measurements. The COSMO-CLM 
model with the wind farm  parametrization15 simulated the wake generated by the wind farms reasonably well. 
Despite the differences in the upwind wind speed, the length and width of the wake were simulated quite well.

Figure 7.  Annual mean losses in the capacity factor CF (CCLM_WF – CCLM) out- and inside of the wind 
farms (gray lines) for the prevailing wind directions of 200°–280° at hub height (90 m) in the period 2008–2017. 
This figure was created with Matplotlib (Hunter, J. D., Matplotlib: a 2D graphics environment. Computing 
in Science and Engineering 9, 2007) and Cartopy (Met office, Cartopy: a cartographic python library with a 
matplotlib interface. Exeter, Devon, https:// scito ols. org. uk/ carto py, 2015).
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Our results show that clusters of large wind farms, such as the farms planned for the near future in the UK’s 
Dogger Bank and the German Bight, have the potential to substantially modify the atmospheric dynamics and 
lead to local mean wind speed reductions extending as far as more than 40 km downwind from the farm. Depend-
ing on the size of the wind farm, generally, the annual mean wind speed deficit can reach 2–2.5  ms−1 which is 
equivalent to the power loss of 1–2  MW45. These results are consistent with the previous  studies15,46,47. These 
authors studied the consequences of wind farms in case studies and short-term simulations. Our results show 
that the previously identified effects accumulate and influence the mean wind pattern. We identified a trade-off 
in the clustering of offshore wind farms. Clustering supports reduced energy production costs due to reduced 
infrastructure investments, but these advantages can be offset by wakes effects and the consequent reduction of 
CF. Our results emphasize that wind energy in the North Sea can be considered a limited resource. With the cur-
rent plans to install offshore wind energy farms in the North Sea locally resource exploitation limits are reached. 
Better planning and optimization of locations are required that consider the development of wind wakes under 
realistic multi-year atmospheric conditions.

It is important to note that for our idealized study we used an average size (90 m hub height and 126 m rotor 
diameter) of turbines for existing wind farms. The rapidly increasing size and power generation of wind  turbines48 
can intensify the wake effects vertically and horizontally. Moreover, wind farm installations in the North Sea are 
further accelerating and the here identified limits of power generation will become more important.

Southwesterly winds are predominant in the North  Sea49 (Fig. 2 and Fig. SI 3), and wake effects and their 
implications for power generation are therefore of particular importance for efficient energy production and 
production costs. During prevailing southwesterly winds, the power production of a downwind wind farm on 
the northeastern side is generally undermined by the wind farms located upwind.

Under stably stratified atmospheric conditions, weak vertical momentum mixing strengthens the wake 
 effect11,15,18,20, and observational evidence shows that the wake can extend up to 50–70 km under such atmos-
pheric  conditions30. Such individual cases are also well reproduced in the model simulations. These findings 
suggest that CF losses can be greater than the mean values shown herein and last longer under stable atmospheric 
conditions. Additionally, this study shows the annual and seasonal mean values calculated using hourly values 
during the period 2008–2017 to illustrate the mean wake effect on the CF using multi-year weather conditions 

Figure 8.  (a) Transects of the seasonal (colored, see legend) and yearly mean (dashed gray) wind speed deficits 
(left axis; CCLM_WF – CCLM) and capacity factor losses (right axis; CCLM_WF – CCLM) for the prevailing 
wind directions of 200°–280° in the period 2008–2017 at hub height (90 m) taken at transect I (German Bight, 
Fig. 5) latitude 54.2 latitude 54.2°N–55.6°N and longitude 5.45°E–8.0°E. Gray sectors indicate the wind farm 
positions. Arrows and attached numbers give the distances between the edges of the wind farms. (b) As of (a) 
but for transect III (Dogger Bank, Fig. 5) latitude 54.4°N–55.8°N and longitude 0.8°E–3.15°E.
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under all atmospheric conditions. This shows that the wind speed and CF deficits are highest during spring 
(mainly March–April) and lowest during November–December. The proximity of large wind farms affects the 
production of downwind wind turbines and wind farms, reducing the CF by more than 20–25%.

Already now, offshore renewable energy production in the North Sea shows substantial impacts on the 
atmospheric conditions therein, and these effects will continue to increase in the future. The evidence indicates 
that OWFs can impact marine animals and can raise environmental and climate  concerns2,50,51. Since wind is 
one of the main factors modulating ecosystem productivity and ecosystem structure, OWFs have the potential 
to develop into dominant ecosystem drivers and need to be considered for ecosystem management and fisher-
ies assessment. Therefore, an optimization strategy based on both national and international considerations is 
required to minimize economic losses and to assess the limits and environmental impacts of industrial offshore 
energy production. Furthermore, atmospheric wakes can induce ocean responses by modifying the sea surface 
roughness, atmospheric stability, and heat fluxes, and hence have the potential to influence local climate that 
requires further  investigation32,52,53.

Methods
Numerical model setup. In this study, we employ the regional climate model COSMO-CLM32 with a 
wind farm  parameterization15,33,34 to consider the wind farm impacts on local atmospheric dynamics and the 
spatial–temporal pattern of wind speed deficits for a near-future wind farm scenario in the North Sea (see Fig. 
SI 1). COSMO-CLM uses a horizontal atmospheric grid mesh size of 0.02° (~ 2 km; 396 × 436 grid cells) and 
62 vertical levels. In our configuration, COSMO-CLM uses a time step of 12 s with a third-order Runge–Kutta 
numerical integration scheme. The physics options include a cloud microphysics scheme, a delta-two-stream 
scheme for shortwave and longwave radiation, and a one-dimensional prognostic TKE advection scheme for the 
vertical turbulent diffusion  parameterization54. The roughness length over the sea is computed on the basis of 
the Charnock  formula54. The initial and lateral boundary conditions for the wind, sea surface temperature and 
other meteorological variables are taken from a CoastDat3  simulation29, which provides hourly data at a hori-
zontal resolution of 0.11° (~ 11 km). The CoastDat3 atmospheric simulation was driven by European Centre for 
Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data in 6 hourly intervals at a horizontal 
resolution of 0.703°55.

To include wind farm effects, a wind farm parameterization for mesoscale numerical weather prediction 
models is implemented into COSMO-CLM56. This parameterization represents wind turbines as a momentum 
sink for the mean flow that converts KE into electric energy and TKE. The parameterization uses the velocity in 
each grid to estimate the average effect of the wind turbines within that grid. In our configuration, we use five 
vertical levels within the rotor area. The wind turbine extracts KE from the mean flow of each layer intersecting 
the rotor area. The amount of extracted KE depends on the wind speed, thrust, power coefficients, air density, 
and the density of the wind turbines in the considered  grid45 (see Fig. SI 13). A fraction of the extracted KE is 
converted into electric power by the turbine, whereas the remaining part of KE is converted into TKE. Here, we 
use the thrust and power coefficients as a function of wind speed derived from the theoretical National Renewable 
Energy Laboratory (NREL) 5 MW reference wind turbine for offshore system  development45. These coefficients 
are close to those of real wind turbines, as the NREL 5 MW turbine data were derived from the REPower 5 MW 
offshore wind turbine. The wind turbine is hallmarked by a cut-in wind speed of 3  ms−1, a rated power speed of 
12  ms−1, and a cut-out speed of 25  ms−1. In this study, we used the 90 m hub height and a 126 m rotor diameter 
with a rated power of 5.3 MW. The chosen turbine size falls within the range of existing wind farms by 2017 
(Table SI 3). For a more detailed description of the wind farm parameterization and its implementation, we refer 
the readers to the previous  studies15,33,34.

Capacity factor (CF). Because of the high variability of wind, low, medium, and high wind speeds alternate 
frequently, and wind turbines cannot operate continuously at the rated power. Therefore, the CF is commonly 
used to calculate the average energy production of a wind turbine. In turn, the CF is used for the economic 
assessment of a project, optimum turbine site matching, and the ranking of potential  sites35. Several generic 
models are available in the literature to represent the ascending segment of the power curve between the cut-
in and rated speeds (Fig. SI 13) independent of the power coefficients, which are unique to every turbine and 
difficult to generalize. These generic models use the cut-in, rated, and cut-out speeds to estimate the ascending 
segment of the power curve without information on the turbine output. We use a polynomial generic  model35 
to estimate the CF using a Weibull probability density function based on hourly wind speed values and three 
speeds, namely, the cut-in (3  ms−1), rated (12  ms−1), and cut-out (25  ms−1), of the performance curve shown in 
Fig. SI 13.

Data availability
The model COSMO-CLM_WF and COSMO-CLM datasets supporting the results can be downloaded via CERA-
DKRZ57,58 and the COSMO-CLM namelists are available from the authors upon request. The COSMO-CLM 
simulations employ the community-wide publicly available (http:// www. clm- commu nity. eu) COSMO-CLM 
code. In situ airborne observational data were accessed via  PANGAEA30 and the FINO data were obtained via 
https:// www. fino- offsh ore. de/ en/ and http:// fino. bsh. de.
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Abstract. The mid-Atlantic will experience rapid wind plant development due to its promising wind resource
located near large population centers. Wind turbines and wind plants create wakes, or regions of reduced wind
speed, that may negatively affect downwind turbines and plants. We evaluate wake variability and annual energy
production with the first yearlong modeling assessment using the Weather Research and Forecasting model,
deploying 12 MW turbines across the domain at a density of 3.14 MW km−2, matching the planned density
of 3 MW km−2. Using a series of simulations with no wind plants, one wind plant, and complete build-out of
lease areas, we calculate wake effects and distinguish the effect of wakes generated internally within one plant
from those generated externally between plants. We also provide a first step towards uncertainty quantification by
testing the amount of added turbulence kinetic energy (TKE) by 0 % and 100 %. We provide a sensitivity analysis
by additionally comparing 25 % and 50 % for a short case study period. The strongest wakes, propagating 55 km,
occur in summertime stable stratification, just when New England’s grid demand peaks in summer. The seasonal
variability of wakes in this offshore region is much stronger than the diurnal variability of wakes. Overall,
yearlong simulated wake impacts reduce power output by a range between 38.2 % and 34.1 % (for 0 %–100 %
added TKE). Internal wakes cause greater yearlong power losses, from 29.2 % to 25.7 %, compared to external
wakes, from 14.7 % to 13.4 %. The overall impact is different from the linear sum of internal wakes and external
wakes due to non-linear processes. Additional simulations quantify wake uncertainty by modifying the added
amount of turbulent kinetic energy from wind turbines, introducing power output variability of 3.8 %. Finally,
we compare annual energy production to New England grid demand and find that the lease areas can supply
58.8 % to 61.2 % of annual load. We note that the results of this assessment are not intended to make nor are they
suitable to make commercial judgments about specific wind projects.

1 Introduction

The US offshore wind industry is flourishing, with a tar-
get capacity of 30 GW by 2030 (FACT SHEET, 2023).
New England features the highest population density in the
United States and commensurate utility usage, making off-
shore wind an attractive regional electricity source. A total
of 27 active lease areas now span the mid-Atlantic Outer
Continental Shelf (OCS). The OCS features low turbulence

(Bodini et al., 2019) and fast winds, with 100 m winds av-
eraging 10 m s−1 (Musial et al., 2016). Consequently, large
wind plants will be constructed to harness the ample wind
resource.

Meteorological conditions and construction challenges
constrain siting options for large wind plants. Because the
average wind direction is southwesterly (Bodini et al., 2019),
a southwest-to-northeast wind plant orientation mitigates ex-

Published by Copernicus Publications on behalf of the European Academy of Wind Energy e.V.



556 D. Rosencrans et al.: Seasonal variability of wake impacts on offshore wind plant power production

ternal waking from neighboring plants. Further, preserving
efficient vessel transit, upholding common fishery practices,
and prioritizing safe Coast Guard search-and-rescue oper-
ations necessitate 1× 1 nm corridors (W.F. Baird & Asso-
ciates, 2019). Considering these constraints, wind plants will
be densely packed into clusters.

Densely packed clusters produce wakes that adversely af-
fect downwind turbines (Nygaard, 2014; Platis et al., 2018;
Lundquist et al., 2019; Schneemann et al., 2020). Wakes are
plumes downwind of turbines with slower wind speeds and
increased turbulence. Mid-Atlantic wakes induced by large
wind plants could impose wind speed deficits up to 2 m s−1

(Pryor et al., 2021; Golbazi et al., 2022). Wind speed deficits
can be replenished by wake recovery in which turbulence en-
trains momentum from aloft into the waked zone (Stevens
et al., 2016; Gupta and Baidya Roy, 2021). However, sta-
bly stratified conditions suppress mixing for wake recovery
(Fitch et al., 2013; Vanderwende et al., 2016; Porté-Agel
et al., 2020). Under certain conditions, mid-Atlantic wakes
could propagate 100 km or more (Pryor et al., 2021; Golbazi
et al., 2022; Stoelinga et al., 2022).

Wake characteristics have been evaluated using physics-
based models of varying complexity. High-fidelity meth-
ods include computational fluid dynamics models solving
Reynolds-averaged Navier–Stokes equations (Antonini et al.,
2020); large-eddy simulations resolving the turbine rotor as
an actuator disk (Mirocha et al., 2014; Aitken et al., 2014;
Shapiro et al., 2019; Arthur et al., 2020); and mesoscale
models parameterizing a hub-height momentum sink, some-
times including a turbulence source (Fitch et al., 2013; Volker
et al., 2015; Archer et al., 2020; Gupta and Baidya Roy,
2021), as reviewed by Fischereit et al. (2022). Pryor et
al. (2021) characterized mid-Atlantic wake impacts using
mesoscale modeling of 55 simulation days. They examined
modified wind plant layouts of 15 MW turbines under differ-
ent flow scenarios, considering power densities between 2.1
and 4.34 MW km−2. Stoelinga et al. (2022) estimated wake
impacts using 15 MW turbines and 16 simulation days under
typical southwesterly flow. Golbazi et al. (2022) considered
summertime wakes with three scales of turbines to consider
surface impacts. Finally, Rybchuk et al. (2022) addressed the
sensitivity to wake characteristics under idealized conditions
by varying planetary boundary layer (PBL) schemes.

In this work, we assess intra-plant and inter-plant
wakes throughout the mid-Atlantic OCS using a yearlong
mesoscale modeling study. The results of this assessment are
not intended to make nor are they suitable to make commer-
cial judgments about specific wind projects. The simulations
use the Weather Research and Forecasting (WRF) model
version 4.2.1 (Skamarock et al., 2019). One set of simula-
tions runs with no wind farms (NWF) as a control, validated
with lidar measurements, while the others use the Fitch wind
farm parameterization (WFP) (Fitch et al., 2012, with up-
dates described by Archer et al., 2020) to incorporate turbine
effects. Our simulations incorporate 12 MW turbines and a

power density of 3.14 MW km−2. Simulations employ dif-
ferent wind plant layouts, including one representative lease
area alone (ONE) within the Rhode Island–Massachusetts
(RIMA) block, all lease areas (LA), and the lease areas plus
the call areas (CA), to assess different waking scenarios (Ta-
ble 1). WFP simulations run separately by added turbulent
kinetic energy (TKE) amount, including 0 % added TKE
(TKE_0) and 100 % added TKE (TKE_100) to quantify the
full range of uncertainty. NWF, ONE, and LA simulations
run from 1 September 2019 to 1 September 2020 to cap-
ture a full year with available lidar measurement data. Due to
computational costs, CA simulations focus on the summer-
time stable period from 1 September to 31 October 2019 and
1 July to 31 August 2020 (Table 1). This time period high-
lights wake impacts during months with presumed frequent
stable stratification and high electricity demands (Livingston
and Lundquist, 2020) as a worst-case scenario.

The remainder of this article is structured as follows. Sec-
tion 2 introduces the model setup and configuration, model
validation, and the analysis methods. Section 3 discusses
variability in stratification, wakes, and power production.
Section 4 concludes the work and offers recommendations
for future work.

2 Methods

2.1 WRF modeling setup

We assess the effects of wakes and power production across
the mid-Atlantic OCS using numerical weather prediction
simulations with WRF version 4.2.1 and the WFP (Fitch et
al., 2012). Version 4.2.1 allows for modifying the amount of
TKE produced by wind turbines and ensures turbulence ad-
vection (Archer et al., 2020). Two nested domains comprise
6 and 2 km horizontal resolutions (Pronk et al., 2022; Xia et
al., 2022; Bodini et al., 2023; Redfern et al., 2023), respec-
tively, and the inner nest begins 20 grid cells into the par-
ent domain (Fig. 1). This same domain and period of study
have been used to explore interactions between power pro-
duction and sea breezes (Xia et al., 2022). Fine vertical res-
olution (10 m) near the surface stretches aloft, with 17 levels
within the lowest 200 m as recommended by Tomaszewski
and Lundquist (2020). We choose an 18 s time step in the
outer domain, 54 vertical levels, a 5000 Pa top, simple dif-
fusion, and damping 6000 m below the model top to prevent
gravity wave reflection. Hourly 30 km initial and boundary
conditions are provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF) fifth-generation reanal-
ysis (ERA5) data set (Hersbach et al., 2020). Sea surface
temperature is provided by the UK Met Office Operational
Sea Surface Temperature and Sea Ice Analysis (OSTIA) data
set (Donlon et al., 2012). We choose the Noah land surface
model (Niu et al., 2011), the Mellor–Yamada–Nakanishi and
Niino level 2.5 PBL and surface layer (Nakanishi and Ni-
ino, 2006), new Thompson microphysics (Thompson et al.,
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Table 1. Summary of WRF simulations.

Simulation type Abbreviation Turbine type Period Added TKE amount No. of turbines

No wind farms NWF n/a Sep 2019–Sep 2020 n/a 0
One wind farm only ONE 12 MW Sep 2019–Sep 2020 0 % and 100 % 177
Lease areas LA 12 MW Sep 2019–Sep 2020 0 % and 100 % 1418
Call areas CA 12 MW Sep 2019–Nov 2019 100 % 3219

Jul 2020–Sep 2020

n/a: not applicable

2008), and the rapid radiative transfer model longwave and
shortwave radiative transfer (Iacono et al., 2008) schemes.
The Kain–Fritsch cumulus scheme parameterizes cloud mi-
crophysics in the outer domain only (Kain, 2004).

2.2 Wind turbine layouts

Wind turbines are sited within lease areas offshore of the US
East Coast (Fig. 1) as defined by the Bureau of Ocean Energy
Management (Bureau of Ocean Energy Management, 2023).
Following realistic deployment strategies, we site individual
turbines 1 nm, or 8.6 rotor diameters, apart and an additional
0.5 nm from lease area boundaries (W.F. Baird & Associates,
2019; Beiter et al., 2020; Walter Musial, personal communi-
cation, September 2020). This layout provides a power den-
sity of 3.14 MW km−2. Lower power densities in US waters
reflect wake concerns in Europe and the need to increase tur-
bine spacing for wake replenishment. Areas that had already
been approved for development are denoted as the lease ar-
eas. Areas where competitive interest was yet to be deter-
mined are denoted as the call areas. Both lease areas and call
areas are filled to spatial capacity with turbines (Fig. 1), rec-
ognizing renewable energy targets (218th Legislature, 2018).

2.3 Wind turbine characteristics

For our simulations, we parameterize 12 MW turbines which
are scaled by Beiter et al. (2020) from a 15 MW reference
turbine with a 138 m hub height and 215 m rotor diameter.
The power and thrust coefficient curves were held constant
from the 15 MW machine. The rotor diameter was scaled
to maintain a specific power of 332 W m−2, which is the
same as the reference 15 MW turbine. Then, the hub height
was determined such that a 30 m gap was maintained be-
tween the lower bound of the rotor tip and the sea sur-
face. No power is produced in region 1 of the power curve,
from 0 m s−1 to cut-in wind speed (3 m s−1). In region 2 of
the power curve, power production increases between cut-in
wind speed and rated speed (11 m s−1). In region 3, between
rated and cut-out wind speed (30 m s−1), an increase in wind
speed no longer yields additional power production (Beiter
et al., 2020) (Fig. 2a).

2.4 Wind farm parameterization

We use the WFP (Fitch et al., 2012) to incorporate the effects
of wind turbines on the 2 km grid. Horizontal wind speed re-
duction from turbine drag (Eq. 1), power production (Eq. 2),
and turbulence generation (Fitch et al., 2012; Archer et al.,
2020) (Eq. 3) are calculated in the WFP from the following:

δ|V |ijk

δt
=−

NijCT
(
|V |ijk

)
|V |2ijkAijk

2(zk+1− zk)
, (1)

δPijk

δt
=
NijCP

(
|V |ijk

)
|V |3ijkAijk

2(zk+1− zk)
, (2)

δTKEijk
δt

=
NijCTKE

(
|V |ijk

)
|V |3ijkAijk

2(zk+1− zk)
, (3)

where i, j , and k represent Cartesian model coordinates;
CT
(
|V |ijk

)
is the wind-speed-dependent thrust coefficient;

|V | is the wind speed at turbine hub height; ρ is the air
density; Aijk is the rotor-swept area; Nij is the number
density of turbines in grid cell ij ; CP

(
|V |ijk

)
is the wind-

speed-dependent power coefficient; zk is the height of verti-
cal model level k; and CTKE is the fraction of energy con-
verted to TKE (Fitch et al., 2012). These values are calcu-
lated at each model level, as the use of a rotor-equivalent
wind speed generally exerts a minor effect (Redfern et al.,
2019).

The thrust and power coefficients (CT and CP, respec-
tively) vary with wind speed as defined by wind turbine man-
ufacturers (Fig. 2b). The thrust coefficient CT is the non-
dimensionalized thrust force exerted by wind on the rotor-
swept plane (Burton et al., 2011).

The power coefficient, CP, governs the fraction of rotor
kinetic energy converted into electrical power. This conver-
sion is not perfectly efficient due to electrical and mechanical
losses (Fitch et al., 2012; Archer et al., 2020). The leftover
fraction of energy (Eq. 4) from the difference between CT
and Cp is transformed into turbulence, CTKE.

CTKE = CT−CP (4)

Because electromechanical losses are not represented by the
WFP, all leftover energy converts to TKE, so the TKE may be
overestimated (Fitch et al., 2012; Archer et al., 2020). Some
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Figure 1. Simulation Domain 1 includes the entire region, and Simulation Domain 2 is outlined by the black rectangle. Each dot represents a
wind turbine. Wind energy lease areas are shown in gray and call areas in blue. The red square zooms in on the Rhode Island–Massachusetts
block of lease areas. The E05 (triangle) and E06 (diamond) floating lidars are shown in red. Atmospheric stratification is assessed at the red
X. Wake propagation distances are assessed along the dashed black lines.

Figure 2. Characteristics of the 12 MW scaled turbine used herein. (a) The power curve and (b) curves showing the thrust coefficients (CT;
dashed orange) and the power coefficients (CP; solid black) with wind speed across the x axis.

researchers suggest this TKE term is unnecessary (Volker et
al., 2015), although comparisons to large-eddy simulations
(Vanderwende et al., 2016) and observations (Siedersleben
et al., 2020) suggest the turbine-produced TKE is critical to
include. Any overestimation of TKE would enhance turbu-
lent mixing, thereby exaggerating turbulent transport of mo-
mentum that causes wake recovery and overestimating power
production. Therefore, Archer et al. (2020) propose reducing
CTKE to 25 %. For these simulations, we bound this uncer-

tainty by carrying out simulations with 100 % and 0 % added
TKE (Fig. A1). TKE advection is turned on.

2.5 Observations

We compared the NWF simulation to observations of off-
shore wind profiles. Two buoy-mounted meteorological
ocean observing systems, denoted E05 and E06, are located
within the Hudson North and Hudson South call areas of the
New York Bight (Fig. 3). Each buoy system samples line-of-
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sight boundary layer wind speed and wind direction using the
ZephIR ZX300M light detection and ranging (lidar) instru-
ment. The lidars are mounted 2 m above the sea surface and
take measurements at 20 m intervals up to 200 m, providing
10 min averages of wind speed and direction, which the New
York State Energy Research and Development Authority
(NYSERDA) has made publicly available (DNV, 2019). We
use floating lidar data to validate simulations for 1 Septem-
ber 2019 to 1 September 2020.

2.6 Stability classification

Different methods can be used to identify stratification, or at-
mospheric stability. Stable stratification can occur in coastal
regions when warm air advects over a cooler sea surface,
thereby suppressing buoyancy and turbulent mixing. Like-
wise, unstable stratification can occur when cool air advects
over a warmer sea surface. Some observations suggest more
frequent unstable stratification, based on the Obukhov length
(Archer et al., 2016). The sign of the Obukhov length de-
pends on the sign of heat flux and can be a useful metric for
determining stability conditions. Other observations suggest
that minimal turbulence and strong veer can be characteris-
tic of stable conditions (Bodini et al., 2019). Wind veer in-
creases in stable stratification as the influence of buoyant-
turbulence-induced friction decreases. Thus, winds turn to
approach quasi-geostrophic flow at a quicker rate, which can
be further exaggerated by the presence of a low-level jet.

We calculate the Obukhov length (Monin and Obukhov,
1954) (L), representative of the height at which buoyant pro-
duction of turbulence first dominates mechanical shear pro-
duction of turbulence:

L=−
u3
∗θv

κg
(
w′θ ′v

) , (5)

where u∗ is the friction velocity (UST from WRF output),
θv is the virtual potential temperature, κ is the von Karman
constant of 0.4, g is gravitational acceleration, andw′θ ′v is the
vertical turbulent heat flux (HFX from WRF output). Lengths
between 0 and −500 m are characterized as unstable strat-
ification, and lengths between 0 and 500 m are categorized
as stable stratification (Muñoz-Esparza et al., 2012). Lengths
approaching negative or positive infinity are neutral. Each
timestamp from the NWF run is assigned a stability for the
1 September 2019 to 1 September 2020 period at a grid point
centered on the RIMA block (Fig. 1).

2.7 Model validation

We validate the NWF model by comparing wind speed esti-
mated by the turbine-free simulations with observations from
E05 and E06 lidars. Model output is obtained from the grid
cells containing the lidars in 20 m intervals from 60 to 200 m
following Pronk et al. (2022). Wind speeds and directions

are compared using a suite of metrics recommended by Op-
tis et al. (2020) for wind resource assessment, including the
correlation coefficient (r), centered root-mean-square error
(cRMSE), and bias:

r =

∑N
i (VWi

−VW)(VLi −VL)
NσWσL

, (6)

cRMSE=

√∑N
i
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VWi
−VW

)
−
(
VLi −VL

))2
N

, (7)

Bias=

∑N
i

(
VWi
−VLi

)
N

, (8)

where V is the wind speed, N is the total number of values,
σ is the standard deviation, and subscripts “W” and “L” in-
dicate WRF and lidar, respectively. Earth mover’s distance
(EMD), or the Wasserstein metric, is calculated with a SciPy
function (Virtanen et al., 2020) as in other wind resource
evaluations (Hahmann et al., 2020). Each of these metrics
provides different insights into the performance of the model.
For instance, the correlation coefficient illuminates how well
the model captures the timing of weather systems and di-
urnal variability. EMD emphasizes the difference between
distributions but not the timing. Bias captures the difference
between measured and modeled values. Finally, cRMSE de-
scribes the random component of error.

The circularity of wind direction must be accounted for
in statistical calculations. For example, computing the aver-
age between 359 and 1°, using a typical arithmetic mean,
would result in 180°. However, the mean wind direction be-
tween those two values should be 360°. The SciPy (Virtanen
et al., 2020) and Astropy (Price-Whelan et al., 2022) Python
packages offer convenient functions which allow the user to
calculate statistics for a circular variable by passing in the
lower and upper bounds, in this case 0 and 360°. We calcu-
late the mean and standard deviation of wind direction us-
ing the SciPy circmean and circstd functions, respectively,
and the correlation coefficient using the Astropy circcorrcoef
function. The cRMSE for wind direction is then calculated
following

cRMSE=√
circmean

(
180°−

∣∣∣∣(DWi
−DW

)
−
(
DLi −DL

)∣∣− 180°
∣∣)2, (9)

where D is wind direction, and D is the circular mean of
wind direction. Bias is calculated similarly to Eq. (8), ex-
cept that differences between NWF and lidar values that are
less than−180° have 360° added and differences greater than
180° have 360° subtracted:

x =

{
x+ 360° for x <−180°
x− 360° for x > 180° , (10)

where x is the (DWRFi −DLidari ) difference.
Time stamps in which the lidar returns NaN values are re-

moved from WRF data sets during comparison (Table 2). Do-
ing so removes 8.1 % of wind speed data at 140 m at E05,
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Figure 3. Hub-height wind roses for the NYSERDA Hudson North (E05) and Hudson South (E06) floating lidars during the 1 Septem-
ber 2019 to 1 September 2020 period. The location of E06 is shown as the red diamond and E05 as the red triangle. The bottom row shows
wind roses segregated by atmospheric stratification.

Table 2. Percentage of data removed at 140 m due to not-a-number
(NaN) values.

Unstable Stable Neutral

E05 1.35 % 6.44 % 0.33 %
E06 3.64 % 9.48 % 0.62 %

made up by 1.22 %, 5.76 %, and 1.13 % in unstable, sta-
ble, and neutral stratification, respectively. Similarly, 13.7 %
of wind speed data are removed at E06 and are made up
by 3.20 %, 9.38 %, and 1.15 % in unstable, stable, and neu-
tral stratification, respectively. An r2 value of 1 indicates a
perfect correlation between NWF and lidar values. A value
of 0 for cRMSE indicates that all values, with model bias
removed, lie on the 1 : 1 regression line. A cRMSE value
greater than 0 indicates the distance of residual points from
the regression line. Negative biases indicate an underestima-
tion from WRF, while positive biases indicate overestima-
tion. A value of 0 for EMD indicates that probability density
functions from each data source are equivalent. A positive

EMD indicates that the NWF wind speed distribution must
shift towards lower values to match the lidar distribution.

NWF wind speed profiles are compared with lidar ob-
servations for the 1 September 2019 to 1 September 2020
period to assess model skill (Fig. 4). Note that Pronk et
al. (2022) provide validation metrics against the E05 lidar
profile during the same period of study and find similar re-
sults. Negative biases (Eq. 8) increase in magnitude with
height between 0 and −0.5 m s−1 (Fig. 4a), showing the
model underestimates the wind speed. Strengths of variation
(Eq. 6) among WRF output and the lidars range between
0.82 and 0.86 (Fig. 4b). Centered RMSE (Eq. 7) increases
with height around 2 m s−1 (Fig. 4c). Finally, EMD values
originate around 0.2 m s−1 at 60 m and increase with height
(Fig. 4d). Comparing lidars E05 and E06, WRF performs bet-
ter at E06 with a smaller bias by 0.04 m s−1, lower cRMSE
by 0.08 m s−1, better correlation by 0.003, and smaller EMD
by 0.05 m s−1.

We further assess the NWF performance, partitioned by
stability conditions. In unstable stratification, WRF wind
speeds have a negative bias that gradually increases in mag-
nitude with height from −0.5 m s−1 at 60 m (Fig. 5a). In sta-
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Figure 4. Vertical profiles for wind speed comparative metrics at the E05 (teal) and E06 (orange) lidars from 1 September 2019 to 1 Septem-
ber 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and (d) EMD.

ble conditions, WRF overestimates wind speeds by roughly
0.4 m s−1 at 60 m with biases approaching 0.0 m s−1 further
aloft (Fig. 5a). In neutral conditions, WRF overestimates
wind speeds by up to 0.3 m s−1 near the surface and underes-
timates wind speeds further aloft. Comparing between mean
E05 and E06 profiles, WRF performs better at the E06 lidar
location by 0.08 m s−1 in unstable conditions, 0.04 m s−1 in
stable conditions, and 0.1 m s−1 in neutral conditions.

NWF and lidar wind speeds correlate well. Correlation
remains the largest in unstable conditions for all heights
(Fig. 5b). The worst strength of relationship occurs in sta-
ble stratification, although there is improvement aloft, and by
160 m, correlation between stable and neutral conditions is
largely equivalent (Fig. 5b). On average, WRF performance
between lidar locations is the same in unstable and stable
conditions and better at E06 by 0.02 in neutral conditions.

Centered RMSE profiles change with stratification. In un-
stable conditions, cRMSE increases somewhat with height
originating from greater than 1.5 m s−1 at 60 m (Fig. 5c).
In stable stratification, the cRMSE profile begins at roughly
2.3 m s−1 at 60 m and increases with height. In neutral condi-
tions, cRMSE increases with height from around 2 m s−1. As
before, WRF performs better at E06. On average, cRMSE is
lower at E06 by 0.1 m s−1 in unstable conditions, by a negli-
gible amount in stable conditions, and by 0.1 m s−1 in neutral
conditions.

Earth mover’s distance has more variability with height. It
is the largest in unstable stratification, increasing with height
from roughly 0.5 m s−1 at 60 m (Fig. 5d). In stable condi-
tions, EMD decreases with height and originates at around
0.35 m s−1 at 60 m. In neutral stratification, EMD decreases
with height from about 0.2 m s−1. On average, WRF per-
forms better at E06 by 0.07 m s−1 in unstable conditions, by
0.04 m s−1 in stable conditions, and by 0.06 m s−1 in neutral
conditions.

Next, we show metrics to compare WRF output wind di-
rection profiles with lidar measurements. Bias is negative,
or counterclockwise, at both E05 and E06 lidar locations.
NWF output resolves wind directions better at E06 with
a mean bias of −7.8° with height as compared to −11.1°
at E05 (Fig. 6a). Correlation coefficients at both locations
are strong, at 0.83 and 0.82 for E06 and E05, respectively
(Fig. 6b). Mean cRMSE (Eq. 9) is similar between lidar loca-
tions, at 5.9 and 6.2° for E06 and E05, respectively (Fig. 6c).
Finally, EMD is lower at E06, increasing with height with
an average of 3.3° (Fig. 6d). EMD is larger at E05, increas-
ing with height with an average of 4.8° (Fig. 6d). Overall,
WRF performs better at E06 with lower absolute bias by 3.3°,
lower RMSE by 0.3°, higher correlation by 0.01, and lower
EMD by 1.48°.

We use the same metrics to validate WRF against lidar-
reported wind directions by stratification and begin with bias
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Figure 5. Vertical profiles for wind speed comparative metrics at the E05 (teal) and E06 (orange) lidar locations subset by stratification (US
– unstable, ST – stable, NT – neutral) from 1 September 2019 to 1 September 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and
(d) EMD.

Figure 6. Vertical profiles for wind direction comparative metrics at the E05 (blue) and E06 (red) lidar locations from 1 September 2019 to
1 September 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and (d) EMD.
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Figure 7. Vertical profiles for wind direction comparative metrics at the E05 (blue) and E06 (red) lidar locations subset by stratification (US
– unstable, ST – stable, NT – neutral) from 1 September 2019 to 1 September 2020. Shown are (a) bias, (b) correlation, (c) cRMSE, and
(d) EMD.

(Fig. 7a). In unstable conditions, mean biases are −7.4° at
E06 and −11.5° at E05. In stable stratification, bias profiles
are more similar between lidar locations, reaching −8.6° at
E06 and −10.7° at E05. Bias is the smallest in neutral con-
ditions at both locations, with mean values of −6.8° at E06
and −10.2° at E05. Overall, WRF performs better at the E06
lidar location by 4.1° in unstable conditions and by 2.0° in
stable conditions and better at the E05 lidar location by 3.4°
in neutral conditions.

The correlation between WRF-derived lidar-measured
wind directions is strong in all stability conditions at both
lidar locations (Fig. 7b). The strength of relation in unstable
conditions is 0.85 at E06 and 0.81 at E05. In stable condi-
tions, the mean correlation is 0.75 at both E06 and E05. In
neutral conditions, the strengths of relation are 0.81 at E06
and 0.83 at E05. Overall, WRF performs better at E06 by
0.03° in unstable conditions and by 0.003° in stable condi-
tions and better at E05 by 0.01° in neutral conditions.

Profiles for cRMSE are similar in unstable and stable
conditions, with worse performance in neutral conditions
(Fig. 7c). In both unstable and stable conditions, mean
cRMSE is 5.9° at both E05 and E06. In neutral conditions,
mean cRMSE is 7.5° at E06 and 7.0° at E05. WRF performs
the same at both lidar locations in unstable and stable condi-
tions and is better at E05 by 0.4° in neutral conditions.

Large variability exists for EMD between lidar locations
in WRF (Fig. 7d). Unstable stratification features the largest
spread between lidar locations, with EMD values of 3.5° at

E06 and 10.4° at E05. In stable conditions, EMD is 7.0° at
E06 and 7.9° at E05. In neutral stratification, mean EMD
values are 5.7° at E06 and 6.4° at E05. On average, WRF
performs the best at the E06 lidar location: 6.9° in unstable
conditions, 0.8° in stable conditions, and 0.7° in neutral con-
ditions.

Wind speed time series are collected and averaged for the
full yearlong period from the grid cells housing lidars E05
and E06 in NWF and from the lidar measurements. The shear
exponent is calculated as

a =
log(V2)− log(V1)
log(z2)− log(z1)

, (11)

where V1 and V2 are the mean wind speeds at heights z1 and
z2, respectively. We hold V1 and z1 constant at a reference
height of 60 m and substitute V2 and z2 with values from 80
to 200 m at 20 m intervals.

Wind speed shear exponents (Eq. 11) differ between NWF
and the lidar measurements. The average exponents from li-
dars E05 and E06 are 0.117 and 0.122, respectively, and are
in good agreement with the annual average of 0.12 for both
measured and modeled results in the mid-Atlantic (Viselli et
al., 2018). The average exponents from WRF at grid cells
housing E05 and E06 are 0.099 and 0.106, respectively.
NWF-derived exponents correctly capture a decrease with
height and lower coefficients at the E05 lidar. However, the
exponents are smaller than those calculated from lidar mea-
surements by −0.018 and −0.016 at E05 and E06, respec-
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Figure 8. Mean wind speed shear exponent by height from NWF
(solid) and from lidar measurements (dashed) from 1 Septem-
ber 2019 to 1 September 2020. E05 is shown in blue, and E06 is
shown in orange.

tively. Smaller exponents in NWF may result from overesti-
mated mixing or misrepresentation of wave-induced rough-
ness.

We calculate profiles of the Perkins skill score (PSS)
(Perkins et al., 2007) between NWF and lidar wind speeds.
Wind speeds are considered at 20 m height intervals from 20
to 200 m. Each wind speed time series is subset by all time
stamps with unstable, stable, and neutral stratification. After
subsetting, time stamps where lidar observations return NaN
are removed from both lidar and NWF time series. At each
height, the probability distribution functions of wind speeds
are binned at 0.2 m s−1 intervals and normalized such that the
frequencies add to unity. The minimum frequency between
modeled and observed values for each bin is stored, and the
resulting stored values are summed to calculate the following
score:

PSS=
n∑
i=1

min(CW (z) ,CL (z)) , (12)

where n is the number of bins, C is the count of normalized
values in a bin, and z is the height. A PSS of 1.0 suggests
perfect overlap of the two distributions.

Profiles of PSS (Eq. 12) between NWF and lidar observa-
tions of wind speed vary by location and stratification. Per-
formance is generally best in unstable conditions at both E05
and E06 lidar locations with a mean value of 0.93. Perfor-
mance is the second best in stable conditions, starting around
0.90 at the surface and increasing to 0.93 at 120 m at E05.
At E06 in stable conditions, PSS reaches a maximum value
of 0.93 at 100 m. Neutral conditions exhibit worse PSS and
larger spread by location. AT E05, PSS minimizes at 0.85
at 160 m and maximizes around 0.88 at 60 m. At E06, PSS
scores minimize at 0.87 at 80 m and maximize at 0.89 at
140 m.

Figure 9. Vertical profiles of the Perkins skill score by stratification
at the E05 (teal) and E06 (orange) lidars subset by stratification (US
– unstable, ST – stable, NT – neutral).

2.8 Wake identification

The wake delineates the region downwind of turbines with a
velocity deficit and turbulence enhancement. We identify the
wind speed wake deficit by subtracting NWF wind speeds
from WFP wind speeds at the hub height. Averaging across
all times during the 1 September 2019 to 1 September 2020
period identifies the overall mean wake wind speed. Because
wakes typically propagate to the northeast during stable con-
ditions (Fig. 3), we calculate the propagation distance of
wakes along a line extending northeast of the RIMA block
(Fig. 1) and report the distance along the line where wake
wind speeds reach a threshold. In unstable conditions the
prevailing wind direction is northwesterly (Fig. 3), so we as-
sess the wake propagation distance to the southeast instead.
The threshold of −0.5 m s−1 is chosen following Golbazi et
al. (2022) and Rybchuk et al. (2022). Finally, we define the
areal extent of wakes as the area with a wind speed deficit
less than −0.5 m s−1.

2.9 Grid balancing

We compare model output energy production to New
England grid demand. Demand data are provided hourly
(NEISO, 2019). For comparison, we compute hourly aver-
ages of WFP power production from each set of simulations.
We compare those averages to the national energy supply by
acquiring the total from the U.S. Energy Information Admin-
istration (EIA, 2023).
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2.10 Power variability

Assessing power variability is essential for addressing tem-
porally changing grid demands. We assess the differences in
electricity generation for each deployment scenario by sep-
arately collecting power output from grid cells containing
wind turbines from ONE, LA, and CA simulations. Power is
summed across grid cells containing turbines and averaged at
1, 7, and 30 d intervals for comparison. We address seasonal
and diurnal variability by further separating and averaging
power production totals at each time step into bins by month
and hour of day. Power losses from the total, internal, and
external wake effects are calculated from the following:

Losstot = 100%−
(
PLA,CA

PNWF

)
× 100%, (13)

Lossint = 100%−
(
PONE

PNWF

)
× 100%, (14)

Lossext = 100%−
(
PLA,CA

PONE

)
× 100%, (15)

Lossext = Losstot−Lossint, (16)

where PLA,CA is the power production at ONE grid cells in
the presence of wakes by either the LA or the CA, PONE is
the power production in the presence of internal wakes from
ONE, and PNWF is the power production from coupling hub-
height wind speeds to the power curve. These methods are
performed separately by added TKE amount. We note that
the upwind conditions change in a LA or CA scenario due
to external wakes, which can modify the internal losses in
the numerator of Eq. (15). Thus, we provide an alternative
method for calculating the external power losses as the dif-
ference between the total losses and the internal losses in
Eq. (16).

Cluster-induced power deficits at ONE occur due to exter-
nal wakes from the upwind lease and call areas. Power output
from ONE, LA, and CA simulations are averaged in hourly
windows at grid cells containing ONE turbines to reduce the
effects of numerical noise (Appendix F). The resulting power
averages from LA and CA simulations are divided by the av-
erages from ONE at each time stamp. The hour of day and
month of year categorize each time stamp, and percentages
are placed into bins accordingly. Within each bin the percent-
ages are averaged. Only power production totals greater than
9.9 MW are considered when calculating power losses. This
threshold represents the power production total when all tur-
bines within ONE begin operating at the cut-in wind speed.
For reference, the total power production for ONE at rated
power is 2124 MW. This method is repeated separately for
TKE_0 and TKE_100 runs.

Individual wind turbines generate internal wakes within
the ONE plant that adversely affect power production. To
quantify internal wake effects at ONE, we collect NWF wind
speeds at the hub height in each cell containing ONE tur-
bines. Wind speeds are convolved with the power curve and

Figure 10. Stability classification using the Obukhov length for the
1 September 2019 to 1 September 2020 period at the RIMA block
from NWF. The tan crosshatch represents neutral stratification, teal
horizontal lines are stable stratification, and red vertical lines are
unstable stratification.

scaled by the number of turbines per cell at 0.01 m s−1 in-
tervals. This method returns the amount of power that ONE
would produce in the absence of wakes. Hourly power aver-
ages are obtained from both NWF and ONE runs and consid-
ered only if power production exceeds 9.9 MW. ONE power
totals are divided by the NWF power estimations from the
power curve. Again, each time stamp is categorized by hour
of day and month of year, and percentages are binned for
averaging. These steps are repeated for both TKE_0 and
TKE_100 runs.

3 Results

3.1 Year-round NWF stratification

The predominance of NWF stability conditions changes
throughout the year (Figs. 10, 11) as assessed using the
Obukhov length (Eq. 5) centered on the RIMA block.

The winter features predominant unstable stratification,
whereas the summer features frequent stable stratification
(Bodini et al., 2019; Optis et al., 2020) (Figs. 10, 11). The
strong stability in summer is caused by nearby surface-
heated air advecting over the colder OCS. These dynamics
reverse during winter when cold air from land advects over
warmer water. Overall, stratification is most frequently unsta-
ble during November and stable during June. April features
the greatest percentage of neutral conditions as the spring-
time transition from cooler to warmer air reduces the air–
sea temperature gradient. The same pattern occurs elsewhere
throughout the OCS because diurnal variability in stratifica-
tion is weaker than the seasonal cycle (Fig. 11). The mean
unstable, stable, and neutral percentages of occurrence at the
RIMA block are 44.3 %, 44.4 %, and 11.2 %, respectively, for
the 1 September 2019 to 1 September 2020 period. Stability
calculations from the model grid cells that house lidars E05
and E06 reveal similar results (Fig. B1). However, Lmay not
always represent conditions aloft (Fig. C1).
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Figure 11. Percentages of occurrence for (a) unstable stratification, (b) stable stratification, and (c) neutral stratification from 1 Septem-
ber 2019 to 1 September 2020.

3.2 Wake variability

Here, we categorize wakes by the maximum wind speed
deficit in space, the spatial extent, and the downwind prop-
agation distance. While wakes remain relatively unchanged
between TKE_0 and TKE_100, they drastically vary by strat-
ification. The maximum average wake wind speed deficit oc-
curs within the wind plant areas and intensifies from −1.5
to−2.8 m s−1, moving from unstable to stable conditions for
TKE_100 (Fig. 12a, c). Normalized with mean NWF hub-
height wind speeds of 9.2 m s−1 (unstable) and 11.2 m s−1

(stable), the corresponding mean wind speed deficits are
16 % and 25 %. Similarly, the maximum average wind speed
deficit intensifies from −1.8 to −3.1 m s−1, a normalized re-
duction of 19 % and 27 %, moving from unstable to stable
at TKE_0 (Fig. 12b, d). Thus, reducing TKE from 100 % to
0 % has a smaller impact on wake strength than increasing
stability.

The areal extent of wakes changes by stability and added
TKE. Wake deficits stronger than the −0.5 m s−1 cutoff in
unstable stratification at TKE_100 (Fig. 12a) cover a to-
tal area of 7208 km2 and represent the best-case scenario
where wakes impact the smallest area. In stable stratifi-
cation at TKE_100 (Fig. 12c), wakes cover a larger area
of 15 948 km2, or 2.2 times larger. A similar increase oc-
curs using TKE_0, although areal coverage of the wake
is larger due to weaker turbulence-induced wind speed re-
plenishment from aloft. At TKE_0 in unstable conditions
(Fig. 12b), wakes stronger than −0.5 m s−1 cover an area
of 7780 km2. In stable stratification, the area increases to
15 636 km2 (Fig. 12d), a factor of 2. The spatial extent of
strong wakes spreading furthest throughout the region, rep-
resenting the worst-case scenario, occurs in stable conditions

at TKE_100. Wakes interact between immediate wind plant
neighbors for all scenarios.

Stratification exerts a stronger effect on wake propaga-
tion distance than TKE does. For instance, wakes extend-
ing 3.7 km downwind in unstable conditions reach 55.4 km
in stable conditions at TKE_100 (Fig. 12a, c), similar to
the estimate of 50 km from Golbazi et al. (2022). Likewise,
wake deficits reaching 5.9 km downwind in unstable strat-
ification reach 55.4 km downwind in stable stratification at
TKE_0 (Fig. 12b, d). The same pattern exists for CA wakes
(Fig. D1). Overall, altering the added TKE amount has a
small impact on the propagation distance of wakes relative to
stratification, and combining stable stratification with TKE_0
results in the strongest wakes.

Yearly averaged wakes show similar trends with TKE and
stability (Table 4). The maximum wake strength intensifies
from −2.2 to −2.5 m s−1 moving from TKE_100 to TKE_0
(Fig. 12e, f). Reducing TKE also increases the spatial cover-
age of wakes from 13 040 km2 using TKE_100 (Fig. 12e) to
13 268 km2 using TKE_0 (Fig. 12f). Downwind propagation
distances remain similar over the yearlong period with wakes
reaching 43.4 km at TKE_100 and 41.3 km at TKE_0.

Reduced TKE limits turbulence-induced momentum
transport from aloft, thereby increasing wake strength. Coun-
terintuitively, longer-lasting wakes in TKE_100 develop
from a larger reduction in momentum from wake recovery
above the turbines (Fitch et al., 2012; Siedersleben et al.,
2020), leaving less momentum available for replenishment
downwind.
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Table 3. Wake wind speed reduction by stratification and TKE amount.

Unstable TKE_100 Stable TKE_100 Unstable TKE_0 Stable TKE_0

Wind speed deficit −1.5 m s−1
−2.8 m s−1

−1.8 m s−1
−3.1 m s−1

Normalized deficit 16 % 25 % 19 % 27 %

Figure 12. Average wake wind speeds among the lease areas during (a, b) unstable stratification, (c, d) stable stratification, and (e, f) the
full 1 September 2019 to 1 September 2020 period. Wakes are simulated with 100 % added TKE (a, c, e) or 0 % added TKE (b, d, f). Wind
speed deficits are shown by the colored contouring, and turbines are shown as the black dots. The −0.5 m s−1 threshold is outlined by the
dashed black line.

3.3 Power deficits

3.3.1 External wake losses

ONE experiences power deficits due to external wakes from
the LA and the CA. Considering external wakes from the
LA at TKE_0 (Eq. 15), the average yearlong power deficit
at ONE is 14.7 % (Fig. 13a) and increases to 15.7 % con-
sidering only the 4 stable CA months. When ONE is waked
by the LA at TKE_100, the average yearlong power deficit

reduces to 13.4 % (Fig. 13b) because increased turbulence
supports faster replenishment. During the 4 months only, the
deficit is 14.4 %. When incorporating wakes from the CA (at
TKE_100), the mean ONE power deficit (over 4 months) is
14.3 % (Fig. 13c). By calculating the external power losses as
the difference between total and internal losses (Eq. 16) in-
stead, the deficits are 8.97 % and 8.43 % for the LA at TKE_0
and TKE_100, respectively. However, power losses vary as
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Table 4. The wake wind speed deficit, spatial extent, and downwind propagation distance by added TKE amount.

Wind speed deficit Spatial extent Propagation distance

TKE_100 −2.2 m s−1 13 040 km2 43.4 km
TKE_0 −2.5 m s−1 13 268 km2 41.3 km

Figure 13. The power deficit at ONE when waked by (a) the LA at TKE_0, (b) the LA at TKE_100, and (c) the CA at TKE_100. The white
space reflects the simulation period. The color bar is broad to facilitate comparison with losses in Fig. 14.

larger reductions from external wakes occur during summer,
whereas smaller reductions occur during winter.

External wake-induced losses vary both diurnally and sea-
sonally. Larger power deficits occur more often during sum-
mer due to stable stratification (Figs. 10, 11a). Smaller power
deficits occur during winter (Fig. 13), with faster winds that
exceed rated wind speed and unstable conditions that erode
wakes faster. Larger power deficits correspond with stable
stratification in June and July. Conversely, smaller power
deficits occur with unstable stratification throughout Novem-
ber and December. These patterns occur because colder air
advects over warmer water in winter, which causes unsta-
ble conditions that erode wakes faster. Conversely, warmer
air advects over colder water during the summer, inducing
stable conditions that limit turbulent wake recovery. While
wake-induced losses vary somewhat across the diurnal cy-
cle, there is no discernible pattern. The ocean’s large heat
capacity suppresses daytime heating, which limits changes
in stratification and, by extension, the magnitude of changes
in wake losses.

3.3.2 Internal wake losses

Internal power deficits (Eq. 14) at ONE are at least 25 %
stronger than externally induced power deficits but expe-
rience similar variability with stability and TKE amount
(Fig. 14). Internal waking induces weaker deficits during

winter and stronger deficits during summer. As with exter-
nal wakes, a clear diurnal pattern fails to emerge. Yearlong
internal wakes from TKE_0 and TKE_100 induce power
losses of 29.2 % and 25.7 %, respectively. During the 4 stable
months only, the deficits increase to 36.9 % and 32.9 %, re-
spectively. Using different PBL schemes with similar turbine
spacing under steady-state idealized conditions, Rybchuk et
al. (2022) find similar internal losses to capacity factor, up to
31.6 %.

The average yearlong power deficits (Eq. 13) at ONE
considering internal wakes and external wakes from the
LA range between 38.2 % (TKE_0) and 34.1 % (TKE_100).
These results concur with wake-induced losses found by
Pryor et al. (2021) of 35.3 % among the LA, based on 11 pe-
riods of different flow scenarios spanning 5 d. Observations
of wake-induced power losses have large variability over the
year, ranging from as low as 5 % to as high as 40 % (Lee and
Fields, 2021). Overall, external wakes produce yearly aver-
aged power losses of 14.1 %, whereas internal wakes induce
larger losses of 27.4 %. Thus, we stress the importance of re-
solving region-specific and time-varying wakes for accurate
energy prediction estimates.

3.4 Annual energy production

Predictions of energy supply are critical for planning, op-
erations, and diversification of renewables. Without internal
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Figure 14. The percentage of power loss at ONE from internal wakes at (a) TKE_0 and (b) TKE_100.

or external wake effects, ONE would produce 11.61 TW h
and meet 10.02 % of New England’s average demand. An-
nual energy production (AEP) from ONE, considering just
internal wakes, reduces to 9.19 TW h (TKE_0) or 9.55 TW h
(TKE_100), which could meet 7.94 % to 8.24 % of New Eng-
land’s demand. Including both internal and external wakes
from the LA, ONE would produce 8.19 TW h (TKE_0) or
8.65 TW h (TKE_100), meeting 7.07 % to 7.47 % of demand.

Increasing the number of wind turbines increases the de-
mand fulfilled; AEP from the LA is 68.12 TW h (TKE_0)
or 70.9 TW h (TKE_100), supplying 58.82 % to 61.22 % of
New England’s demand. On an hourly basis, the LAs ful-
fill demand only 24.6 % (TKE_0) and 26.5 % (TKE_100)
of the time, highlighting the necessity for resolving accu-
rate wake losses across the OCS. Previous work (Livingston
and Lundquist, 2020) assuming a constant 20 % wake loss,
shown here to be underestimated, has suggested that 2000
turbines of 10 MW could meet New England’s demand 37 %
of the time. All in all, the LA, with 1418 turbines of 12 MW,
supplies 68 and 71 TW h yr−1, or 1.72 % (TKE_0) to 1.65 %
(TKE_100) of the nation’s energy supply.

3.5 Power variability by TKE amount

3.5.1 Temporal power variability

While differences in wake strength between TKE amounts
alter power production, wind speed exerts a larger influence.
Maximum power is produced during spring with the least
amount of power produced during summer (Fig. 15a) for
both TKE_0 and TKE_100 because spring features faster
wind speeds (Fig. 15b). Power production responds to hub-
height wind speeds (Fig. 15) more than stability conditions
(Figs. 10, 11). Reduced power production during summer

may be problematic as New England’s top-10 utility demand
days since 1997 have all occurred in July or August (NEISO,
2023).

Total power production varies slightly between TKE_100
and TKE_0. Due to weaker replenishment within the rotor-
swept area, TKE_0 wakes are stronger, so TKE_0 produces
less total power than TKE_100 (Fig. 15a). Over the year,
TKE_0 runs produce 96.2 % (ONE) and 96.1 % (LA) of the
power of TKE_100. This difference does not arise from ex-
treme outliers, as TKE_0 runs produce less power more fre-
quently, at 71.3 % (ONE) or 81.2 % (LA) of the time.

3.5.2 Power variability by wind speed

Differences in power production (TKE_100 − TKE_0) vary
by NWF hub-height wind speed (Fig. 16). These differences
are small at slow wind speeds because little momentum is
available for wake recovery and at faster wind speeds within
region 3 of the power curve (11–30 m s−1) where wind speed
changes do not affect power production (Fig. 2a). Differences
in wind speed within region 3 should have no effect on power
production and are caused by numerical noise propagating
through wind plant areas (Fig. F1). The largest differences in
power production occur in region 2 and around rated wind
speed where the power curve is steep (Figs. 2a, 16). Addi-
tionally, large differences in power production can occur in
specific meteorological conditions such as frontal propaga-
tion.

Comparison of power production between TKE amounts
by other meteorological variables lacked significant trends.
For example, we additionally analyzed differences in power
production by wind direction, following the hypothesis that
northerly wind directions could transport more turbulence
offshore because land has a higher roughness length than the

https://doi.org/10.5194/wes-9-555-2024 Wind Energ. Sci., 9, 555–583, 2024



570 D. Rosencrans et al.: Seasonal variability of wake impacts on offshore wind plant power production

Figure 15. (a) Total power production at ONE by TKE amount. TKE_100 power output is shown in orange and TKE_0 output in teal.
(b) Hub-height NWF wind speed at a point centered on the RIMA block. The dotted lines represent the daily average, dashed lines the 7 d
average, and solid lines the 30 d average.

Figure 16. The difference in power production (TKE_100-TKE_0)
at ONE as a function of wind speed. The colored contouring depicts
the density of scattered points per pixel. Wind speeds are obtained
every 10 m from a point centered on ONE at hub height.

ocean. TKE_100 runs may harness this mechanical turbu-
lence more for wake replenishment. Analysis of differences
in power production by PBL height also failed to show sig-
nificant patterns. We assumed that higher PBL heights indi-
cated a greater reservoir of turbulence from which TKE_100
runs could replenish the wake, resulting in greater power pro-
duction. Further analysis concluded by comparing power dif-

ferences with the aforementioned variables’ rates of change.
However, we reached the same conclusions, as higher den-
sities of scattered points existed around frequently occurring
conditions such as southwesterly wind directions.

Wake strength varies spatiotemporally between TKE_0
and TKE_100 runs. While the mean difference in wind speed
at hub height between TKE_100 and TKE_0 runs indicates
that TKE_0 produces stronger wakes, this averaging may ob-
scure the actual spatiotemporal variability. For example, a
wind plant may have greater TKE_100 wake wind speeds,
while its nearby neighbor has greater TKE_0 wake wind
speeds at the same point in time. Additionally, a specific wind
plant may not consistently produce stronger wakes under one
TKE setting. A wind plant may fluctuate between producing
stronger wakes in TKE_100 runs and TKE_0 runs through-
out time. This finding suggests that other boundary layer dy-
namics play a role in wake strength, and the variability of
power production must be explored.

We note that wind speed and numerical noise are not the
only contributors to power differences. One case study anal-
ysis shows that TKE_0 and TKE_100 separately produce
more power within respective 99th percentiles over a short
period of time in September (Fig. 17c). Investigation reveals
that a cold front propagated through the ONE wind plant
from the northwest to the southeast during this period. The
cold front is identified by a lenticular band of upward verti-
cal motion at the frontal head followed by turbulent vertical
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Figure 17. Propagation of a cold front through the ONE wind plant. (a) NWF vertical wind speed is shown as the colored contour with
upward vertical velocities in greens and downward vertical velocities in purples. (b) NWF potential temperature is shown with lower tem-
peratures in blues and higher temperatures in reds. In both (a) and (b), the black dots indicate wind turbine locations in ONE TKE_0 and
TKE_100. (c) The difference in power production between TKE_100 and TKE_0 is shown in MW, with positive values indicating that
TKE_100 produces more power.

motion (Fig. 17a) in addition to advection of lower potential
temperatures (Fig. 17c). As the cold front approaches, more
power is produced by the TKE_100 simulation and is within
the 99th percentile. When the frontal head first interacts
with Vineyard Wind, more power is produced by the TKE_0
simulation and is within the 99th percentile. Conversely,
TKE_100 produces more power following the frontal head.
Frontal propagation can induce Kelvin–Helmholtz instabili-
ties, the turbulence of which may aid wake recovery by verti-
cally mixing momentum (Jiang, 2021). Increased turbulence
in the TKE_100 simulation can harness more downward ver-
tical transport of momentum from Kelvin–Helmholtz insta-
bilities aft of the frontal head, increase wake replenishment,
and produce more power.

4 Conclusions

This modeling study assesses the variability of wake effects
across the mid-Atlantic OCS based on yearlong simulations,
including a first step towards uncertainty quantification and
approaches for distinguishing internal and external wake ef-
fects. In addition to a simulation without wind plants (NWF),
validated by comparison to floating lidar observations, three
wind plant layouts are explored, including a representative
wind plant alone (ONE), all lease areas (LA), and the lease
areas plus the call areas (CA). Modifying the added TKE
amount (TKE_0 or TKE_100) by turbines provides uncer-
tainty quantification in power production estimates.

The OCS is characterized by more frequent unstable strat-
ification during winter and stable stratification during sum-
mer (Bodini et al., 2019; Optis et al., 2020; Debnath et al.,
2021). In stable conditions, wakes are stronger and propa-
gate further downwind, (Fitch et al., 2013; Vanderwende et
al., 2016; Porté-Agel et al., 2020). In the worst-case sce-

nario where downwind wake recovery diminishes during sta-
ble stratification, mean wakes propagate 55 km downwind.
While wakes may not reach downwind clusters on average,
inter-cluster waking occurs intermittently. While TKE_0 pro-
duces stronger wakes than TKE_100, the downwind propa-
gation distances do not differ.

Reduced wake wind speeds, as compared to the NWF
simulation, affect power production. Yearly averaged wake
losses induce power deficits at ONE from 38.2 % (TKE_0)
to 34.1 % (TKE_100). This deficit comprises both internal
and external waking. External wakes induce yearly aver-
aged power losses of 14.7 % (TKE_0) or 13.4 % (TKE_100),
whereas wakes from the CA induce similar losses of 14.3 %
over 4 months. Using an alternative method, external wakes
induce losses of 8.97 % and 8.43 % for the LA at TKE_0
and TKE_100, respectively. Internal wakes at ONE pro-
mote larger power losses of 29.2 % (TKE_0) or 25.7 %
(TKE_100). Wake-induced power losses vary seasonally
with smaller diurnal variability. Larger power deficits occur
during summer, where frequent stable conditions limit wake
erosion. Although upwind clusters may generate strong ex-
ternal wakes among the LA, wind plant orientation with re-
spect to prevailing winds can reduce adverse impacts from
nearby neighbors. Ample distance for replenishment of ex-
ternal wakes by the CA moderates the negative effects. In-
ternal wake losses remain larger due to shorter distances
with limited wake recovery. Both external and internal wake-
induced losses grow in summer stably stratified conditions.
These losses similarly increase in strength for TKE_0 simu-
lations from inhibited recovery.

Resolving precise wake losses and AEP are crucial for
stakeholders and grid operators. In the absence of wakes,
ONE could supply 10.02 % of New England’s demand. Op-
erating alone, ONE’s supply reduces to 7.94 % (TKE_0) or
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8.24 % (TKE_100). Adding external wakes from the LA,
ONE’s annual supply lessens to 7.07 % (TKE_0) or 7.47 %
(TKE_100). Although wakes are stronger among the LA, the
greater number of turbines can meet 58.82 % (TKE_0) and
61.22 % (TKE_100) of New England’s demand, or roughly
1.72 % and 1.65 % of national demand. However, the LA
only satisfies demand about 25 % of the time on an hourly
basis. Overall, spring features maximum power production
with the fastest hub-height wind speeds. Wind speeds are
slower in summer, reducing power production during July
and August, which have featured New England’s top-10 util-
ity demand days since 1997 (NEISO, 2023).

Variable TKE amounts marginally impact power gener-
ation. TKE_0 simulations average 3.8 % less production
than TKE_100 throughout the year, as reduced turbulence
in TKE_0 limits momentum transport into the waked zone.
Although differences in power production are small, both
simulations exhibit large variability at short temporal peri-
ods. Improving WFP accuracy by accounting for wind shear
throughout the rotor-swept region (Redfern et al., 2019) and
dynamic air density may increase the variability in power
production further (Wu et al., 2022). Further, different sizes
of turbines may be installed in some of these regions, and the
size of the turbine can influence the impacts of the turbine
(Golbazi et al., 2022).

Future wind resource assessments may neglect differences
between TKE_0 and TKE_100 because the power produc-
tion offset is minor, although we identify a strong outlier dur-
ing a frontal passage when differences in power production
between TKE_100 and TKE_0 are large. While power pro-
duction differences are minor, effects on other atmospheric
variables may be more significant (Fig. A1). Variability may
be influenced by other meteorological conditions. Successive
analyses should consider yearlong CA simulations to iden-
tify the full range of external wake impacts. Although we
infer that the effects of CA wakes on ONE are small rela-
tive to LA wakes, yearlong estimates may show otherwise.
Notably, we find that internal wakes have larger impacts on
power production than those generated externally.

Appendix A

To assess the sensitivity of simulations to the amount of pa-
rameterized TKE, we conducted a set of 2 d test runs from
11 to 13 July 2017. This time period was chosen for its
predominance of southwesterly winds, which represent typ-
ical conditions across the OCS, and for the availability of
Air–Sea Interaction Tower lidar observations for wind pro-
file validation of the NWF simulations. Test runs consist of
0 % (TKE_0), 25 % (TKE_25), 50 % (TKE_50), and 100 %
(TKE_100) added TKE with the WFP.

Hub-height wind speeds vary by simulation type and
added TKE amount (Fig. A1a). Mean WFP wind speeds are
always slower than NWF wind speeds due to the momen-

tum sink introduced by wind turbines, by 2.9 m s−1. Larger
variations between wind speeds (Fig. A1a) correspond with
larger spreads in power output by TKE amount (Fig. A1c).
The sequencing of power production driven by TKE amount
remains consistent, namely that the differences progress from
TKE_0 to TKE_25, TKE_50, TKE_75, and TKE_100. Be-
cause power production totals for TKE_25 and TKE_50 are
typically bounded by the totals for TKE_0 and TKE_100,
production simulations incorporate TKE_0 and TKE_100
only to account for the full range of uncertainty throughout
a full yearlong period from 1 September 2019 to 1 Septem-
ber 2020.

Although subtle, several important meteorological quan-
tities from the model grid cell at the center of the RIMA
block vary by the added TKE amount. For example, wind
speeds are slower on 12 July between 12:00 and 16:00 UTC
(Fig. A1a). The wind speed reduction during this time pe-
riod causes a corresponding decrease in turbulent transport
of moisture. The mean difference in moisture fluxes through-
out the full period between TKE_100 and TKE_0 is 2.84×
10−6 kg m−2 s−1 (Fig. A1b). Note that the surface moisture
flux remains negative throughout the period. While maritime
moisture profiles typically exhibit a decrease in concentra-
tion with height, corresponding with a positive flux, mixing
from the turbines reduces the near-surface concentration and
reverses the gradient.

Heat flux exhibits large variability. The mean difference in
heat flux throughout the full period between TKE_100 and
TKE_0 is 3.61 W m−2 (Fig. A1d). The wind speed decrease
between 12:00 and 16:00 UTC reduces surface stresses and
turbulent transport of heat. The reduction in heat flux during
this time period causes 2 m temperatures to decrease and ex-
hibit less variability by TKE amount, with a mean difference
of 0.26 K between TKE_100 and TKE_0 (Fig. A1f).

The reduction in turbulent mixing lowers the PBL, regard-
less of TKE amount, to shallow heights between 30 to 80 m
at 13:00 UTC (Fig. A1e). The near-surface PBL height sup-
presses the small variations in turbulent mixing across test
runs and causes fluxes to equalize. PBL heights differ the
most by added TKE amount and may result from changes in
weighting between two separate height determination meth-
ods present in the MYNN physics driver (Fig. A1c).
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Figure A1. The effects of modifying the amount of turbulent kinetic energy (TKE) during test runs. Panels show (a) hub-height wind
speed, (b) surface moisture flux, (c) normalized power production, (d) surface heat flux, (e) planetary boundary layer (PBL) height, and
(f) 2 m temperature. Values are collected from a point centered on the RIMA block. Power production is the sum of all cells containing wind
turbines. TKE_100 is shown in orange, TKE_50 in blue, TKE_25 in gray, TKE_0 in black, and NWF in purple dashes.
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Appendix B

Stratification at the E05 and E06 lidars (Fig. B1) exhibits
similar seasonal variability to the RIMA block (Fig. 10).
The winter months feature predominant unstable stratifica-
tion caused by cold air advecting over a warm sea surface.
In the spring and early summer, stratification transitions to
more common stable conditions as warm air advects over a
cooler sea surface. Stratification is most commonly unstable
in November and stable in May.

Figure B1. Stability classification using the Obukhov length for the 1 September 2019 to 1 September 2020 period at the (a) E05 and
(b) E06 lidars from NWF. The tan crosshatches are neutral stratification, blue horizontal bars are stable stratification, and red vertical bars
are unstable stratification.
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Appendix C

Surface estimates of L may not represent stability aloft
(Fig. C1) and may overestimate unstable conditions. When
considering monthly averaged potential temperature profiles
through the rotor layer, only November and December ap-
pear unstably stratified. While September and October ap-
pear predominantly unstable based on surface estimates, po-
tential temperature gradients within the rotor-swept area sug-
gest slightly stable conditions, supporting inferences that off-
shore conditions are stable during late summer. Therefore,
our limited set of CA simulations focus on 1 September to
31 October 2019 and 1 July to 31 August 2020 for its pre-
sumed abundance of stable stratification.

Figure C1. Monthly averaged WRF-simulated potential temperature profiles at a point centered on the RIMA block. Horizontal gray lines
indicate the levels of the hub height (dashed) and the rotor-swept area (solid).
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Appendix D

Wakes in the simulations with CA show similar dependence
on stratification (Fig. D1). Note that we simulate the CA for
4 months only (1 September to 31 October 2019 and 1 July
to 31 August 2020) at one TKE level only (TKE_100) due to
computational costs. The maximum wake strength intensi-
fies from−1.6 to−3.2 m s−1 moving from unstable to stable
stratification (Fig. D1b, c).

Wake propagation distance for the call area simulation is
also affected by stratification. During the 4 months consid-
ered, unstable, stable, and neutral conditions occur 38.2 %,
53.4 %, and 8.3 % of the time, respectively. As such, there
is essentially an even split between the percentage of occur-
rence of unstable and stable conditions. In unstable condi-
tions, wakes from the two southernmost lease areas fail to
reach neighboring downwind clusters on average, and no
wakes stronger than this threshold reach the RIMA block
(Fig. D1e). In stable stratification, wakes from each clus-
ter reach downwind clusters, including the RIMA block
(Fig. D1f). Averaged over all 4 months, wakes between LA
and the CA along the New Jersey and New York bights af-
fect each other, but no wakes reach the RIMA block. Wakes
may still interact with downwind plants at individual times
and affect power production.

Figure D1. Average wake wind speed deficits among the call areas (a, d) for the combined 4-month period, 1 September to 31 October 2019
and 1 July to 31 August 2020, (b, e) during unstable stratification and (c, f) during stable stratification. All panels show 100 % added TKE.
Wake wind speed deficits are shown by the colored contour, and turbines are shown as black dots. The upper row is zoomed in to increase
granularity.
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Appendix E

Here, we characterize the (WFP-NWF) TKE differences by
maximum value and by spatial extent. The maximum average
TKE additions remain similar by stratification at TKE_100,
reaching 1.00, 1.01, and 1.00 m2 s−2 during unstable con-
ditions, stable conditions, and the full year, respectively
(Fig. E1a, c, e). The amount of added TKE is not homo-
geneous across the wind plants in TKE_100, as the greatest
contributions occur in grid cells containing more wind tur-
bines. Some TKE is introduced in TKE_0 due to wind speed
shear, although the amounts are over an order of magnitude
smaller. The maximum average TKE amounts for TKE_0 are
0.05, 0.03, and 0.03 m2 s−2 during unstable conditions, stable
conditions, and the full year, respectively. Being purely shear
induced, regions experiencing the most TKE in TKE_0 cor-
respond more with the maximum wake wind speed deficits
(Fig. 12b, d, f).

Figure E1. Average hub-height (WFP-NWF) TKE difference among the lease areas during (a, b) unstable stratification, (c, d) stable strati-
fication, and (e, f) the full 1 September 2019 to 1 September 2020 period. Panels show 100 % added TKE (a, c, e) or 0 % added TKE (b, d,
f). The TKE amount is shown by the colored contouring, and turbines are shown as the black dots.

We further characterize added TKE amounts by their spa-
tial extent. We report the area encompassed by added TKE
amounts greater than a threshold of 0.005 m2 s−2 because
a cutoff of 0 m2 s−2 includes noise throughout the domain
(Fig. F1), and the spatial extent is not realistic. In TKE_100,
the spatial extents are 10 724, 10 064, and 9608 km2 in un-
stable stratification, stable stratification, and for the full year,
respectively (Fig. E1a, c, e). In TKE_0, the spatial extents are
13 888, 10 724, and 11 332 km2 in unstable stratification, sta-
ble stratification, and for the full year, respectively (Fig. E1b,
d, f).
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Appendix F

Results can show evidence of numerical noise, which
emerges when simulations incorporate the WFP (Ancell et
al., 2018; Lauridsen and Ancell, 2018). In our simulations,
these brief periods of numerical noise emerge and decay,
often coincident with precipitation. While we expect differ-
ences in wake wind speed immediately downwind of power
plants, it is unlikely that these differences could advect to the
southeast corner of the domain, roughly 600 km southeast of
the RIMA block (Fig. F1a). If this numerical noise occurred
in grid cells with turbines, then this noise would introduce
error in power estimations.

We explored several approaches to mitigate the numeri-
cal noise, none of which succeeded. First, we increased the
floating-point accuracy of numerical calculations by enabling
double precision in WRF. Double precision limits the growth
of rounding error to smaller magnitudes (Ancell et al., 2018).
This attempt aimed to confine perturbations to smaller orders
of magnitude that take longer periods of time to become sub-
stantial. To prevent “runaway” error growth after long peri-
ods of time, we submit simulation restarts each month.

In observing a spatial correlation of numerical noise with
convective precipitation during test runs, we reran test sim-
ulations with a more complex microphysics scheme. The
Thompson microphysics scheme, used throughout, is dou-
ble moment with respect to cloud ice only. We substituted
the Morrison microphysics scheme, which is fully double
moment with respect to cloud droplets and rain, cloud ice,
snow, and graupel (Morrison et al., 2009). The use of Mor-
rison microphysics did not improve numerical noise, so its
computational cost could not be justified.

Next, we introduced a filter for shortwave numerical noise
by prohibiting upgradient diffusion. Doing so requires set-
ting the parameter diff_6th_opt to 2 in the namelist, as
certain combinations of advection and diffusion orders are
conducive to mitigating noise around heavy precipitation
(Kusaka et al., 2005). While Kusaka et al. (2005) found the
combination of fifth-order advection and sixth-order diffu-
sion to perform best, we had previously attempted this com-
bination because default advection in WRF is fifth order.
Thus, we attempted the next best recommendation – com-
bining sixth-order advection and diffusion. Again, this com-
bination did not improve results.

We made a final attempt at noise reduction by running an
ensemble of three members using a stochastic kinetic energy
backscatter scheme. Ensemble members contain seeds with
variable time steps that randomly inject kinetic energy into
grid cells (Berner, 2013). These stochastic supplements re-
plenish the kinetic energy sink from unresolvable subgrid-
scale processes. We followed recommendations to perturb
the stream function and potential temperature backscatter
rates by 1× 10−5 and 1× 10−6, respectively. Again, while
subtle differences emerged between the simulations, little
improvement was found.

We saw little improvement from the aforementioned pre-
processing efforts. Given this lack of improvement and a
need to conserve computational resources, we employed
averaging during postprocessing to alleviate the effects of
noise. Modifying averaging periods impacts the range of nu-
merical noise in the wind speed field (Fig. F1b). Noise oc-
curring in grid cells containing turbines could undermine
power estimation accuracy, and we observed noise occur-
ring in the southeastern portion of the domain. Subtrac-
tion of wind speeds between simulations with variable TKE
amounts should only show differences within the wake, and
such differences are a result of noise. Averaging periods pro-
vide greater relief. While 2 and 4 h averaging periods deliver
the best results, these temporal scales can hide important di-
urnal variability. Conversely, a 30 min averaging period can
improve results, but local extrema occasionally reach mag-
nitudes similar to the magnitudes of the raw noise. Thus,
hourly averaging can mitigate noise without masking im-
portant variability. As a final note, other researchers have
benefitted by employing grid nudging within this domain
above the PBL (Maryam Golbazi, personal communication,
September 2022).
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Figure F1. (a) The wind speed difference between TKE_100 and TKE_0 at the hub height from LA runs. Wind turbines are shown as black
dots. The blue contouring indicates TKE_100 produced faster wind speeds and vice versa. (b) Wind speeds obtained at the red circle in
(a) are shown as a time series. The raw difference in wind speeds and averaging periods are shown as different line colors in the time series.
The vertical gray line shows the time stamp of the map.
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Code and data availability. The data and files that support
this work are publicly available. The ERA5 boundary con-
ditions can be downloaded from the ECMWF Climate Data
Store at https://doi.org/10.24381/cds.bd0915c6 (Hersbach et
al., 2023). Shapefiles including the bounding extents of the
lease and call areas are available at https://www.boem.gov/
renewable-energy/mapping-and-data/renewable-energy-gis-data
(Bureau of Ocean Energy Management, 2023). Individual turbine
coordinates and their power and thrust curves are provided at
https://doi.org/10.5281/zenodo.7374283 (Rosencrans, 2022).
WRF namelists for NWF and WFP simulations can be obtained
at https://doi.org/10.5281/zenodo.7374239 (Rosencrans, 2021).
The simulation output data will be available in HDF5 format at
https://doi.org/10.25984/1821404 (National Renewable Energy
Laboratory, 2020).
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Abstract: Offshore wind farm cluster effects between neighboring wind farms increase 

rapidly with the large-scale deployment of offshore wind turbines. The wind farm wakes 

observed from Synthetic Aperture Radar (SAR) are sometimes visible and atmospheric and 

wake models are here shown to convincingly reproduce the observed very long wind farm 

wakes. The present study mainly focuses on wind farm wake climatology based on Envisat 

ASAR. The available SAR data archive covering the large offshore wind farms at Horns Rev 

has been used for geo-located wind farm wake studies. However, the results are difficult to 

interpret due to mainly three issues: the limited number of samples per wind directional 

sector, the coastal wind speed gradient, and oceanic bathymetry effects in the SAR retrievals. 

A new methodology is developed and presented. This method overcomes effectively the first 

issue and in most cases, but not always, the second. In the new method all wind field maps 

are rotated such that the wind is always coming from the same relative direction. By applying 

the new method to the SAR wind maps, mesoscale and microscale model wake aggregated 

wind-fields results are compared. The SAR-based findings strongly support the model results 

at Horns Rev 1. 
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1. Introduction 

In the Northern European Seas offshore wind farms are planned as clusters. The wind farm wake 

from one wind farm thus has the potential to influence the power production at neighboring wind farms. 

The expected wake loss due to wind farm cluster effects is investigated in the present study. The wind 

farm wake cluster effects are strongly dependent upon the atmospheric conditions. These vary spatially 

and temporally. One remote sensing method for observing ocean surface winds is satellite Synthetic 

Aperture Radar (SAR). The advantage of SAR is that a large area is observed and several wind farms 

are covered. The derived wind map from SAR provides a snapshot of the wind field during a few seconds 

at the time of acquisition. 

In the satellite SAR data archives covering the North Sea, thousands of wind turbines are visible as 

white dots in calm conditions. For low wind speed the backscatter signal over the ocean is low and the 

images appear dark while hard targets such as wind turbines and ships provide high backscatter and the 

objects appear very bright. During windy conditions wind farm wakes are sometimes visible as dark 

elongated areas downwind of a wind farm while the surrounding seas appear brighter. This is a result of 

the differences in wind speed with reduced winds downwind of large operating wind farms. The intensity 

of backscatter of microwave electromagnetic radiation from the ocean surface is a non-linear function 

of the wind speed over the ocean. The physical relationship is due to the capillary and short gravity 

waves formed at the ocean surface by the wind. For higher wind speeds the backscatter is higher. 

Previous wind farm wake studies based on SAR from ERS-1/-2, Envisat, RADARSAT-1/-2, 

TerraSAR-X and airborne SAR show great variability in wind farm wakes [1–4]. This reflects the natural 

variability in atmospheric conditions at the micro- and mesoscale. Wind farm wakes are often not clearly 

visible in the SAR archive data. This may be explained by wind turbines out of operation or presence of 

oceanic features, e.g., bathymetry, currents, surfactants. However, the great variability in the wind field 

is most likely a major cause. 

In order to show that wind farm wakes are detectable from SAR, we present in this study one case 

based on RADARSAT-2 ScanSAR Wide. This scene is a good example where ideal conditions for wake 

analysis occur and the coverage is just right for capturing 10 large offshore wind farms located in the 

southern North Sea. We compare the instantaneous SAR-based wind farm wakes to micro- and 

mesoscale wake model results. 

For the rest of our SAR wind archive, we wish to find out if wakes can be detected even if they are 

not so clearly visible. We first use a simple method which has some disadvantages. Next we apply the 

aggregated method to overcome some of these disadvantages. 

This is the first time that a suitable number of SAR scenes covering several large operating winds 

farms have become available [5]. The present study focuses on the wind farm wake climatology using 

many overlapping SAR scenes. The wide-swath-mode (WSM) products from the Advanced SAR 

(ASAR) on-board Envisat are selected. This data source is sampled routinely so there are many more 

samples but with less spatial detail (original resolution 150 m) than those used in previous studies  
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(of the order 5 to 30 m spatial resolution) where the data are rare and infrequent and only sampled upon 

request [1–4]. It is questionable whether wake effects can be detected from Envisat ASAR WSM data 

as we cannot always visually see the wind farm wakes. However, we hypothesize that the combination 

of many satellite samples will show an aggregated effect of the wind farm wakes on the mean wind 

climate in the area. The SAR-based wind farm wake climatology results therefore can be used to validate 

wake model results. The wind farm wake climatology can be modelled by micro- and mesoscale models 

but perfect agreement cannot be expected between SAR and wake model results. This is due to the 

different nature of data with SAR based on the sea surface while wake models operate around wind 

turbine hub-height. 

The main topic of the study is on the potential of using SAR for characterization of wind flow around 

offshore wind farms. Our mission is to find out how to best utilize SAR for wake mapping. Three modes 

of investigation are considered: (1) Wind flow observed at 10 offshore farms with wind farm wakes 

concurrent in one SAR scene; (2) Wind flow observed at two wind farms concurrent and wind farm 

wakes average value based on 7 to 30 SAR scenes; (3) Wind flow observed at one wind farm at a time 

and the aggregated wind farm wake based on 100 to 800 SAR scenes. Basic information on the three 

modes of investigation is listed in Table 1. The advantages and limitations of each investigation mode 

in regard to wind farm wake model comparison are provided. Selected wake model results are presented 

as demonstration for each of the modes. Presenting the three modes in such an order clearly shows the 

evolution of wake studies using SAR. 

Table 1. SAR source, number of wind farms covered in the method, number of SAR scenes 

used in each method for wake identification based on no averaging, geo-located SAR wind 

field averaging and rotated SAR wind field averaging. The spatial resolution of the wind 

fields are given. The Section in this paper where each mode is presented is also indicated. 

Satellite Data 
Number of 

Wind Farms 
Number of 
SAR Scenes 

Averaging 
Analysis 

Type 
Resolution 

(km) 
Section 

RADARSAT-2 10 1 None Qualitative 1 3 
Envisat ASAR 2 7–30 Geo-located Quantitative 1 4 
Envisat ASAR 1 100–800 Rotated Quantitative 1 5 

The structure of the paper includes in Section 2 a description of the study site, satellite data and the 

two wake models used. In Section 3 the results from the case study based on RADARSAT-2 and the 

results from two wake models are presented and discussed. Section 4 presents the Envisat SAR-based 

wind farm wake climatology based on simple averaging of the wind fields at Horns Rev 1 and 2 wind 

farms and comparison to results from one wake model. Section 5 gives introduction to the new 

methodology developed in which the wind field maps are rotated such that the wind is always coming 

from the same relative direction. The Envisat SAR-based results from the new methodology as well as 

wake model results from two models are presented and Envisat SAR-based results from four other wind 

farms are presented. In Section 6 is the discussion of results. Conclusions are given in Section 7. 
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2. Study Site, Satellite SAR and Wake Modelling 

2.1. Study Site 

Wind flow around the wind farms in the southern part of the North Sea is investigated. The wind 

farms studied are listed in Table 2 and the location of most of the wind farms is shown in Figure 1. Those 

not shown in Figure 1 are the Alpha ventus wind farm located in the German North Sea and Horns  

Rev 1 and 2 located in the Danish North Sea. The information in Table 2 includes the year of start of 

operation and key data on the wind turbines and area covered. 

 

Figure 1. RADARSAT-2 intensity map of the southern North Sea observed 30 April 2013 

at 17:41 UTC. The blue lines outline wind farms and the red arrows the wind farm wake. 
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Table 2. Wind farm info: Country, start year of operation, approximated latitude and longitude, number and size of turbines, wind park capacity 

and area covered. 

Wind Farm Nationality Year Latitude (°) Longitude (°) Number of Turbines Turbine Size (MW) Park (MW) Area (km2) 

Alpha ventus Germany 2009 54.010 6.606 12 5 60 4 
Belwind 1 Belgium 2010 51.670 2.802 55 3 165 13 

Greater Gabbard United Kingdom 2012 51.883 1.935 140 3.6 504 146 
Gunfleet Sands 1 + 2I United Kingdom 2010 51.730 1.229 48 3.6 172.8 16 

Horns Rev 1 Denmark 2002 55.486 7.840 80 2.0 160 21 
Horns Rev 2 Denmark 2009 55.600 7.582 91 2.3 209.3 33 
Kentish Flats United Kingdom 2005 51.460 1.093 30 3 90 10 

London Array Phase 1 United Kingdom 2012 51.626 1.495 175 3.6 630 100 
Thanet United Kingdom 2010 51.430 1.633 100 3 300 35 

Thornton Bank 1 Belgium 2009 51.544 2.938 6 6 30 1 
Thornton Bank 2 Belgium 2012 51.556 2.969 30 6.15 184.5 12 
Thornton Bank 3 Belgium 2013 51.540 2.921 18 6.15 110.7 7 
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2.2. Satellite SAR 

SAR data from RADARSAT-2 and Envisat ASAR WSM are used. From RADARSAT-2 only one 

scene is investigated. It is ScanSAR Wide in VV polarization. The wind field retrieval requires input 

information about the wind direction. From the RADARSAT-2 image the wake direction has been 

estimated as 40° and using this input for wind direction, wind speed has been retrieved using  

CMOD-IFR2 [6]. It is the equivalent neutral wind (ENW) at the height 10 m. The calculated wind speed 

is presented in Figure 2a. The original ScanSAR Wide product has spatial resolution 100 m. The spatial 

resolution is reduced to approx. 1 km in connection with the processing of wind fields. This is performed 

to eliminate effects of random noise and long-period waves. 

 
(a) 

 
(b) 

Figure 2. (a) Satellite 10-m SAR wind retrieval observed 30 April 2013 at 17:41 UTC and 

(b) modified PARK wake results at 70 m for the wind farms in the UK and Belgium.  

The wind direction used for the modeling is indicated with the black arrow. 

The Envisat ASAR data were processed to wind fields as part of the project NORSEWInD [5].  

The wind field retrieval gives the ENW at the height 10 m. For processing of large image archives, it is 

desirable to use wind direction information from an atmospheric model. In this case the wind directions 

were obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) model and 

interpolated spatially to match the higher resolution of the satellite data. Further details about the  
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SAR-wind processing chain, which was setup by Collecte Localisation Satellites (CLS), are given in [5]. 

The original WSM product has spatial resolution 150 m. The spatial resolution is to approx. 1 km in the 

wind field. 

2.3. Wake Modelling with PARK and WRF 

A modified version of the PARK wake model [7], also implemented in the Wind Atlas Analysis  

and Application Program (WAsP) [8], is here used for wake calculations. The main difference between 

this modified version and that in WAsP is that the former does not take into account the effects of the 

“ground reflecting back wakes” and so it only takes into account the shading rotors both directly 

upstream and sideways. The PARK wake model is based on the wake deficit suggested by [9], who 

derived a mass-conservation-like equation for the velocity immediately before a turbine u2, which is 

affected by a wake: 
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where u1 is the upstream wind speed, a the induction factor which is a function of the thrust coefficient 

(Ct), kw the wake decay coefficient, x the downstream distance and rr the turbine’s rotor radius. The 

square of the total wake deficit is estimated as the sum of the square of all contributing wake deficits. 

We implemented the model in a Matlab script. This allows us to compute wake deficits at any given 

point. The wake model can be compared to satellite derived wind maps which contains information over 

a large area. We use kw = 0.03 for the wake computations. 

The Weather Research and Forecasting (WRF) mesoscale model [10] is also used for wake modelling. 

The advantage of WRF is that the dynamic synoptic flow is considered. The computational cost is much 

higher than that for the PARK model though. 

Mesoscale models have been developed to simulate the atmosphere flow over areas on the order of 

hundreds of kilometers. Due to their low horizontal resolution unresolved processes, such as turbulence 

and turbine induced wakes have to be parametrized. In common wind farm parametrisations [11–16]  

the local turbine interaction is not accounted for, instead the wind speed reduction within the wind  

farm is obtained from the interaction between the turbine containing grid-cells. The Explicit Wake 

Parametrisation (EWP) is used for the parametrization of wind farms [16]. In this approach a grid-cell 

averaged deceleration is applied, which accounts for the unresolved wake expansion with the turbine 

containing grid-cell. Turbulence Kinetic Energy (TKE) is provided by the Planetary Boundary Layer 

(PBL) scheme from a changed vertical shear in horizontal velocity in the wake. The EWP scheme is 

independent of the PBL scheme, although, a second order scheme is recommended. 

We use WRF V3.4 with the selected mesoscale model physics parametrizations: PBL [17] (MYNN 2.5), 

convection [18] (Domain I and II), micro-physics [19], long-wave radiation [20], shortwave  

radiation [21], land-surface [22] and Nudging of U and V in the outer domain (outside PBL). The number of 

grid cells in the innermost domain were 427 times 304 in the x and y direction, with a 2 km grid-spacing. 

We used [16] for the wind farm parametrization. 



Energies 2015, 8 5420 

 

 

The model outer domain is driven by ERA-Interim reanalysis data [23] and two nests are inside.  

The horizontal resolution for the three domains is 18 km, 6 km and 2 km, respectively. The inner nest is 

run twice, without and with the wind farm parametrization. The number of vertical layers is set to 60.  

The second mass level is at around 12 m above sea level and it is used for the comparison to the  

satellite images. 

3. Case Study Based on RADARSAT-2 

The case study is based on the RADARSAT-2 scene from 30th April 2013 at 17:41 UTC (selected 

from around 30 images with visible wakes). Figure 1 shows the backscatter intensity map. The wind is 

from the northeast and the map shows elongated long dark areas downwind of most of the wind farms. 

These are the wind farm wakes. The approximate extent of the individual wind farm wakes is outlined 

in the image. The longest is at Belwind around 55 km long while at Thornton Bank it is 45 km, London 

Array 15 km and Thanet 14 km. At Kentish Flat the wind farm wake is only 10 km long but it is probably 

passing over the coast and inland in the UK. This cannot be mapped from SAR. It should be noticed that 

all wakes are very straight and with similar direction. In the intensity map the wind turbines can be seen 

as small regularly spaced white dots while numerous ships can be noted in irregular spatial pattern.  

Some large ships show higher backscatter than the turbines. 

The retrieved wind speed map is shown in Figure 2a. The wind speed in the northern part of the map 

is slightly lower than in the southern part. Yet the synoptic flow appears to be fairly homogenous across 

the entire area. Coastal speed up is seen particular near the UK and Belgium coastlines. The wind speed 

varies around 8.5–9.5 m·s−1 in areas not affected by wind farms while the wind farm wake regions show 

lower wind speed around 7–8 m·s−1 dependent upon location. The wake at London Array is very wide 

and it appears to influence Kentish Flat at this time. The wake at London Array has a large wake deficit 

with much lower wind speeds in the wake than in the upwind free stream region. Wake meandering is 

not pronounced. 

The case illustrates a rather unique situation. Firstly because we observe wakes in the satellite  

image for all wind farms distributed in a large area of the North Sea (all farms in the area show clear 

speed deficits). Secondly the wind speed and wind the direction do not seem to largely change over such 

an extended area. Therefore we are able to simulate with the PARK wake model all wind farms at the 

same time (assuming the same background inflow conditions for all of them). The background wind 

speed is about 9 m·s−1 and direction 40°. We use these two values at 70 m as inflow conditions for the 

wake modeling. 

Figure 2a shows the SAR wind retrieval at 10 m, where most of the variability seems to come from 

the wake deficits downstream the wind farms, and the wake model results at 70 m in Figure 2b.  

In this case, we do not extrapolate the satellite background conditions up to 70 m or extrapolate 

downwards the model results to 10 m as we assume the same wind speed at around hub height when 

performing the wake simulations. The comparison is only qualitative. 

Interestingly, the speed deficits seem to be rather well reproduced by the wake model, extending in 

most cases nearly as long as the wakes observed in the SAR image. 

The WRF wake model with the EWP wind farm scheme is also used for simulation. We include only 

London Array, Greater Gabbard, Thanet, Belwind1 and Thornton Bank which are the largest wind farms. 
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The domain is rotated around 10° at the wind farm location. The simulation is from the 24 April to  

1 May 2013. The velocity deficit at 10 m at 30 April 2013 at 18:00 UTC is shown in Figure 3. We have 

chosen to plot the velocity deficit since due to the gradients in the background velocity the wake is not 

visible in the velocity field from the wind farm simulation. 

 

Figure 3. WRF wake model results on velocity deficit in m·s−1 at 10 m AMSL at  

30 April 2013 at 18:00 UTC at the wind farms London Array, Greater Gabbard, Thanet, 

Belwind 1 and Thornton Bank. 

The WRF modelled wakes at the UK wind farms are oriented slightly more towards the eastern 

direction than the satellite wakes. The orientations differ by around 10°. For the Belgian wind farms we 

find that the wakes are well aligned in the SAR and WRF results. Regarding the wake extension behind 

the wind farms we find for the London Array short wakes both in SAR and WRF while the wakes at  

the Thanet and Greater Gabbard wind farms are considerably longer both in SAR and WRF. However 

WRF shows even longer wakes than SAR for Greater Gabbard and Thanet. The extension of wakes at 

the Belgian wind farms compare well in SAR and WRF. 

From WRF it is found that the synoptic conditions two hours before 18:00 UTC show intensified 

pressure gradients, leading to increased wind speeds near the English coast from 4 m·s−1 to higher  

winds in the order of 10 m·s−1. The Greater Gabbard and Thanet wind farms experienced high wind 

speeds for two hours at 18:00 UTC. The wind speeds started to increase at the London Array only shortly 

before 18:00 UTC. It might be that the increasing model wind speeds are for some hours out of phase, 

which would explain the longer wakes behind Greater Gabbard and Thanet wind farms in WRF 

compared to SAR. 

In summary, the wind farm wakes from several wind farms are visually compared between SAR and 

WRF simulations of the velocity deficit obtained without wind farm and with wind farms using the EWP 

scheme. The wind farm wake directions and extension of wake are found to compare well despite that 

mesoscale features, such as that resulting from unsteady flow conditions, are noted in the wind farm 

wakes in the WRF simulation. We cannot expect the WRF simulations to match the observed velocity 

and wind direction in SAR satellite data perfectly. The PARK model results do not include unsteady 

flow but even so the PARK model results have overall good agreement to SAR. This can in part be 

attributed to the rather unique atmospheric conditions at the time of this SAR acquisition. The results for 

single events only can be used qualitatively. For a quantitative comparison statistics over longer periods 

are needed. 
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4. Wind Farm Wake Climatology Geo-Located Wind Maps 

The case in Section 3 was selected based on clear visual observation of wind farm wakes at several 

wind farms within one satellite SAR image. However, we would like to study the behavior of the wind 

farm wake in a climatological fashion and investigate whether this can be performed using our Envisat 

ASAR WSM data set. We select to study the Horns Rev 1 and 2 wind farms for which we have 356 SAR 

scenes in total for the period of dual wind farm operation from September 2009 to the termination of the 

Envisat mission in March 2012. 

As the wake behavior is highly dependent on the inflow wind conditions, in particular the wind 

direction, we perform the study for 12 directional sectors based on the ECMWF model wind direction 

used to retrieve the SAR winds. The SAR scenes are first binned according to the wind directions 

extracted for a single point near the two wind farms. The data set is then filtered such that only scenes 

with wind speeds in the range 4–14 m·s−1at the same point are included (total of 241). This is the range 

where wind farm wakes are expected to be most detectable. At lower wind speeds, the turbines are not 

operating and at higher wind speeds, wind penetration through the wind farms is expected. For each 

directional bin, we extract the inflow conditions from a point upstream of the wind farms for every SAR 

scene in the bin. The reference points are located on two circles circumscribing the wind farms Horns 

Rev 1 and Horns Rev 2 with radii of 7.5 km and 10 km, respectively, as shown in Figure 4. To get 

representative inflow conditions, the satellite winds are extracted within a radius of 10 km for Horns  

Rev 2 and a radius of 7.5 km for Horns Rev 1 wind farm. 

 

Figure 4. Horns Rev 1 and 2 wind farms in red and black markers, respectively.  

The locations of the points where the inflow conditions are extracted per sector  

(cyan markers) is also illustrated. 

We perform simulations using the modified PARK model at all positions on the satellite grid and for 

all the inflow conditions per sector. The point around the wind farms where we extract the inflow 

conditions is selected based on the sector analyzed, e.g., we use the point north of Horns Rev 2 when 
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performing simulations for Sector 1. In the following subsections we perform qualitative comparisons 

of the 10 m wind speed SAR retrievals with the results of the wake model per sector at the same height. 

Both results (wind speed maps) show the average wind speed per sector. We choose to show results for 

Sector 2 and 3 in Figure 5 because the coastal wind speed gradient and wind farm wakes can be seen in 

these results even though relatively few data are available. Table 3 shows the number of samples per 

sector. The inflow wind speed for Sector 2 and Sector 3 is 8.52 and 8.25 m·s−1 in average with a standard 

deviation of 3.50 and 2.55 m·s−1, respectively (these are the values at 70 m height). This means that 

simulations are performed for a rather wide range of wind speeds. These two examples have several 

overlapping images and several features can be noted such as the coastal wind speed gradient and wind 

farm wake. 

(a) 

(b) 

Figure 5. Average wind speed based on satellite SAR (left) and modified PARK wake model 

results (right) at 10 m height for the Horns Rev wind farm area for winds from Sector 2 (a) 

and Sector 3 (b). The color bar indicates wind speed in m·s−1. 

Table 3. Number of Envisat ASAR samples available per wind directional bin at Horns Rev. 

Sector 1 2 3 4 5 6 7 8 9 10 11 12 Total 

Samples 13 7 12 16 24 21 22 28 22 30 20 26 241 
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For Sector 2 there are seven available SAR images for the analysis and the average wind speed is  

7.2 m·s−1. It is surprising we do not observe wakes from the Horns Rev 1 wind farm (Figure 5a).  

This might be simply because of the high horizontal wind speed gradient approaching the coast, which 

is located east of Horns Rev 1. There is a clear wake spreading towards the southwest direction of the 

Horns Rev 2 wind farm. The PARK model results show clear wakes spreading southwest of both  

wind farms. 

For Sector 3 twelve SAR images are available for the analysis (west of Horns Rev 2 the number is 

reduced to 10) with an average wind speed of 7.0 m·s−1. This case shows agreement in terms of the 

location of the areas where wakes are observed in both the SAR and the PARK wake model at both wind 

farms (Figure 5b). 

The number of samples per sector varies from 7 to 30 within the 12 sectors. The overall agreement 

between SAR and the wake model is variable. For some sectors (1 and 7) the bathymetry effect at Horns 

Rev appears to be particularly strong as previously noted by [1]. This results in the lack of wake effects 

in the mean wind speed maps from SAR due to the interaction of bathymetry and currents, which 

sometimes leaves a detectable “imprint” at the sea surface. This effect is most visible when winds blow 

directly from the north or south at Horns Rev (not shown here). 

Another reason for the difficulties to systematically observe wakes of offshore wind farms  

from satellite-derived wind products are inhomogeneous flow. Although the ocean surface is rather 

homogenous, e.g., when compared to the land surface, the effects of the horizontal wind variability 

diminish those of the wakes. In the particular case of the Horns Rev area, there is a systematic wind 

speed gradient near the coast also obstructing the observation of wakes, particularly for easterly and 

westerly winds. These effects are not taken into account in the PARK modeling. The coastal gradient  

in wind speed is noticeable in the SAR images in Figure 5. 

Finally it can be noted that the distribution of wind maps into direction sectors is performed  

with some uncertainty. The model wind directions used to drive the SAR wind speed retrieval are not 

always accurate. The accuracy of the wind direction input could be improved through implementation 

of higher-resolution regional model simulations, e.g., from WRF. Another option is to detect the wind 

direction directly from wake signatures whenever they are visible in the images. The distribution of 

satellite scenes into the 12 sectors is based on information extracted at a single point. Local turning of 

the wind is possible but not accounted for in the analysis. Each directional bin is 30° wide thus the peak 

wake directions are expected to vary within this and it will diffuse the observed aggregated wake 

features. Due to the nature of the SAR images (specifically its number) and due to other phenomena 

causing spatial variability in the wind speed (like coastal gradients and mesoscale phenomena), it seems 

not suitable to perform the SAR wake analysis per sectors this wide. 

5. Wind Farm Wake Climatology Based on Rotation of Wind Maps 

In this section a new approach to analyze SAR-derived wind farm wakes in a climatological way is 

presented. The method aligns (rotates) all SAR wind field samples such that the wind farm wakes are 

overlapping before the wake deficit is calculated. This increases the number of samples considerably 

compared to the method presented in Section 3. Furthermore the 30° wind direction bins used previously 

give diffuse results whereas in the new method wind directions alignment at 1° resolution is used.  
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The new method is based on extracting wind speeds along points inscribed by circles centered on the 

wind farm under analysis. While the method was developed for analysis of wakes in SAR scenes,  

here it is also applied to the WRF simulations as a way to validate the mesoscale simulated wakes. 

5.1. Description of the Method 

For each SAR scene (or WRF simulated wind field) the wind speeds as a function of compass 

direction θ are extracted along 3 concentric circles centered on the wind farm. The radii depend on the 

wind farm in question, and are given in Table 3. 

Figure 6 gives an example of the circles centered on the Horns Rev 2 wind farm. The wind fieldsare 

based on SAR data (1 km). It can be difficult to determine a wake by eye. For each SAR scene the wind 

speeds along these 3 circles are extracted and stored as Ui (θj), where Ui is the wind speed for circle i 

where i = 1, 2, 3 and θj is the compass direction relative to the center of the wind farm. θj steps through 

values from 0 to 359° with a 1 degree increment. The number of scenes used for the analysis depends 

on the wind farm under examination. The number is given in Table 4. The WRF model is run for all 

SAR scenes from Horns Rev 1 and 2, and results are extracted in a similar way from the WRF simulation 

results as for the SAR wind fields. The SAR results are valid at 10 m AMSL while WRF model results 

are available at 14 m AMSL. 

 

Figure 6. Example of the circles centered on Horn Rev 2 wind farm. The radii are 8, 11 and 3 km. 
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Table 4. The radii of the three concentric circles for the different wind farms and the number 

of Envisat ASAR scenes used for the analysis. 

Wind Farm r1 (km) r2 (km) r3 (km) Nscenes 

Alpha ventus 5 10 15 245 
Belwind1 6 11 15 97 

Gunfleet Sands 1 + 2 4 5 6 153 
Horns Rev 1 6 10 13 835 
Horns Rev 2 8 12 15 303 

Thanet 7 9 11 128 

First the sum of wind speeds is calculated: 
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where k is the scene number, and Nscene is the total number of scenes. Figure 7a shows SN plotted against 

θ, for the Horns Rev 1 wind farm. We see from this plot how the mean wind speed depends on θ. This 

can be explained in terms of the gradient of the mean wind in the vicinity of the coastline. We call this 

the coastal gradient. Similar results of SN based on WRF are shown in Figure 7b. The coastal gradient in 

wind speed at Horns Rev 1 shows lowest values around 80°–110° (east), where the inscribed circles are 

closest to the coastline, and highest around 250° (west), where the inscribed circles are furthest from the 

coastline both in SAR and WRF. SAR shows a direction closer to 80° while WRF shows a direction 

closer to 110°. It is expected that there is an east-west gradient at Horns Rev as reported in [24]. For the 

eastern sector SAR shows higher wind speed values at the inner radius (6 km) and progressively lower 

values at outer radii (10 and 13 km) (nearer to the coastline). For the western sector SAR shows slightly 

higher wind speed at outer radii (further from the coastline). 

WRF shows a similar pattern as SAR for the western sector but shows a reverse order in the wind 

speed at the eastern sector at different radii. This most likely is due to the simulated wake effects of 

Horns Rev 2 influencing the results at the 13 km radius around 260°–350°. This is supported by 

examining the results from using WRF without simulating the wind farms, shown in Figure 8. In this 

plot a very much cleaner signature of the coastal gradient is seen. The next step is to rotate the direction 

frame of reference for each SAR scene by using each scene’s reported wind direction, θk, to give a new 

direction reference, φ. In the new direction reference frame for each scene φ = 0° is aligned in the upwind 

direction and thus one may expect that the wake direction is in the region of φ = 180°. Now we can 

determine the wind speeds on the inscribed circles as a function of φj instead of θj by using: 

φ ൌ θ െ θ (3)

The sum of wind speeds for all scenes is now calculated with respect to the new direction frame, i.e.: 
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(a) 

 
(b) 

Figure 7. Horns Rev 1 wind speed summations without rotation (mean wind speed gradient) 

(S) based on SAR (a) and WRF (b). 
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Figure 8. Horns Rev 1 wind speed summations without rotation (S) based on WRF without 

wind farms, so showing only the coastal wind speed gradient. 

Figure 9a shows SR plotted against φ, for the Horns Rev 1 wind farm. The corresponding results of 

SR based on WRF simulations are shown in Figure 9b. Please note that the differences between the top 

and bottom panels are due to the individual rotation of each scene prior to averaging and not the result 

of a single rotation by one angle. The similarity in form between SAR and WRF for the rotated maps 

(Srot) is very good with low wind speeds showing at all radii at around φ = 180°. The inner radius shows 

more wake effect than outer radii. The SAR derived results are less smooth than those from WRF because 

the SAR scenes capture variability at smaller scales, due to the heterogeneity of the wind field, than is 

modelled by WRF. 

To further reveal the wind farm wake from the heterogeneous wind field around the wind farm a 

method to calculate a wake wind speed deficit is employed. It is based on calculating a local perturbation 

of the wind speed on each SAR scene based on the side lobe wind speeds. The side lobe wind speeds are 

used at the directions φ + Δφi and φ − Δφi. For the smallest radius Δφ1 = 90°, this means that the side 

lobe wind speed is from the left and right of the wind farm, at a distance of r1 from the farm center. For 

the other radii, the side lobes have the same distance, r1, from the line aligned with the wind direction 

and passing through the center of the wind farm, thus: 

∆φ ൌ arcsin ൬
ଵݎ
ݎ
൰ (5)

The wake wind speed deficit is defined by: 

ܷ
 ൌ ܷ൫φ൯ െ

1
2
ሺ ܷ൫φ  ∆φሻ  ܷሺφ െ ∆φ൯ሻ (6)

and the wake wind speed deficit summation is: 
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(a) 

 
(b) 

Figure 9. Horns Rev 1 wind speed summations with rotation (Srot) based on SAR (a) and 

WRF (b). 

Figure 10 shows SD plotted versus φ for the Horn Rev 1 wind farm for SAR and WRF. In Figure 10 

the wake wind speed deficit results based on SAR wind fields and WRF simulations both show the 

deepest wake at the inner radius and gradual recovery at the outer radii. Both SAR and WRF results 

show a speed up along the sides of the wake. This shows most clearly at the inner radius but is also noted 



Energies 2015, 8 5430 

 

 

at the outer radii. The SAR results on wake deficit compares well to the WRF results at Horns Rev 1, 

however the magnitude of the SAR derived wake is weaker compared to the WRF wakes. It should be 

noted that the WRF simulations here are one embodiment of WRF simulations and that broader 

variability in WRF-generated wakes would be generated by other choices of PBL schemes, vertical 

resolution and approach for representing the wind farm effect. 

 
(a) 

 
(b) 

Figure 10. Horns Rev 1 wake wind speed deficit (SD) based on SAR (a) and WRF (b).  

The shaded areas in SAR indicate the standard error. 

5.2. PARK Model Results 

The PARK model is used to simulate 855 cases (a few more cases than used above but the results are 

expected to be comparable) at Horns Rev 1. The SAR wind time series at 10 m is used as input,  
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the winds are extrapolated to 70 m and the wake is modeled at that height and finally the winds are 

extrapolated downwards to 10 m again. The extrapolation is done using the logarithmic wind profile 

assuming a constant roughness length of 0.0002 m. The results are presented at 10 m. Three wake decay 

coefficients are used. The three wake decay coefficients are: 0.03, 0.04 and 0.05. The wake decay 

coefficient 0.04 is often used offshore while the lower and higher values are used in case of more stable 

or unstable cases. The results are rotated and averaged and the results are shown in Figure 11. The coastal 

gradient is not accounted for in the PARK model results. In case the coastal gradient should be added in 

the PARK model this could either be from SAR or from WRF, but it has not been attempted in the 

current study. The results are comparable to the wake wind speed deficit (SD) results. 

 
(a) 

 
(b) 

Figure 11. Cont. 
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(c) 

Figure 11. Wake results from the modified PARK model at Horns Rev 1 using wake decay 

coefficients (a) 0.03; (b) 0.04 and (c) 0.05. 

Figure 11 shows the systematic variation in wake with deeper wakes at the inner radius and 

progressively weaker wakes further from the wind farm. The wake decay coefficient of 0.03 gives much 

deeper wakes than for the higher wake decay coefficients, in particular for the inner radius. The shape 

of the wake compares well to Figure 10 from SAR and WRF. 

5.3. Horns Rev 2 Results 

Horns Rev 2 is located further offshore than Horns Rev 1 thus similar directional but lower wind 

speed gradients are expected. The mean wind speed gradient results based on SAR and WRF for Horns 

Rev 2 are presented in Figure 12a,b.The coastal wind speed gradient observations in SAR at Horns Rev 

2 (Figure 12a) show a very peaked and significant minimum around 110° corresponding to the direction 

of Horns Rev 1. The feature (drop of around 0.2 m·s−1) is observed at all radii (8, 11 and 13 km) and is 

most pronounced at the outer radius. This narrow fine-scale feature is only fully observed in SAR. SAR 

resolves features at smaller spatial scales than the WRF simulations presented here. This minimum value 

might be related to the wind farm wake from Horns Rev 1. Interestingly WRF shows a broad minimum 

with a shift in direction between radii from 100° at the 8 km radius to 110° at the 10 km radius and 120° 

at the 13 km radius (Figure 12b). Thus the WRF simulation may in fact here capture a blend of coastal 

gradient and wind farm wake from Horns Rev 1. At the western sector SAR shows a peaked maximum 

around 250° and similar wind speeds at all three radii while WRF shows flatter maximum and slightly 

higher winds at outer radii. 

Figure 12c,d shows the rotated maps (Srot) for Horns Rev 2. For SAR a minimum around 180° at  

8 km radius is observed while at 10 km and 13 km the minima are around 250° and 110°, respectively. 

Only at 8 km do the WRF simulations agree with the SAR observations. The three radii at Horns Rev 2 

are each located 2 km further from the wind farm center than the results for Horns Rev 1. This was 

necessary because the Horns Rev 2 wind farm is larger than the Horns Rev 1 wind farm. This however 
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means that the wind alignment between inflow conditions and the deepest wind farm wake potentially 

deviate relatively more at Horns Rev 2 than Horns Rev 1. 

(a) (b) 

(c) (d) 

Figure 12. Results for Horns Rev 2. (a) wind speed summations without rotation  

(mean wind speed gradient) (S) based on SAR; (b) WRF; (c) wind speed summations with 

rotation (Srot) based on SAR; (d) WRF. 

Figure 13 shows the wake wind speed deficit (SD) results from SAR and WRF. The results at  

the inner radius compare well even though the SAR results show a broader wake than WRF. Speed up 

in the side lobe winds are noticed both in SAR and WRF at the inner radii and no residual wind speed 

gradient is noted. At the middle and outer radii WRF shows gradual decrease in the wake winds speed 

deficit and speed up at the sides while the SAR results are difficult to interpret. In SAR the minimum 

wake wind speed deficit is not observed around 180° but around 100° and 250°. The analysis appears 

not to work so well in this case, in part due to the significant minimum around 110° in Figure 12a. This 

feature may possibly be the wake feature of Horn Rev 1, which acts to contaminate the analysis, as this 

feature can be as strong as the Horn Rev 2 wake itself. 
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Figure 13. Similar to Figure 10 but for Horns Rev 2. 

5.4. SAR-Based Results for Six Wind Farms 

Based on the available Envisat ASAR wind field archive we find it interesting to compare the 

observed aggregated wind farm wakes at four other wind farms in the southern North Sea using the new 

methodology of rotation of the wind maps. The results of the wake wind speed deficit (SD) are shown in 

Figure 14 together with the results from Horns Rev 1 and Horns Rev 2 already discussed. 

It is the results for the average of the three radii (see Table 4) for each wind farm that is shown.  

Figure 14 shows results for six wind farms. It is noted that Gunfleet Sands 1 + 2 show the deepest wake 

wind speed deficit. The side lobe speed-up effects are clear. A residual wind speed gradient is not noted. 

For the wind speed summation (S) (not shown) there is a weaker signature of a climatological wind speed 

gradient across the wind farm compared to other wind farms, this may be because the radii used  

are smaller. 
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Figure 14. SAR-based wind farm wake observed at six wind farms, Alpha ventus, Belwind 1, 

Gunfleet Sands 1 + 2, Horns Rev 1, Horns Rev 2 and Thanet, showing the wake wind speed 

deficit (SD). 

At the Thanet wind farm, the wake wind speed deficit results show very clear wake at around 180° 

and side lobe speed-up effects. A residual of the coastal wind speed gradient is noted. There is a feature 

at 50° with lower winds that would need further investigation.  

At the Belwind 1 wind farm the wake wind speed deficit is clear but not as pronounced as for the 

Gunfleet Sands 1 + 2, Thanet and Horns Rev 1 results. Weak side lobe effects are observed at Belwind 1. 

A residual of coastal wind speed gradient is not noted in the wake wind speed deficit despite that strong 

coastal gradient mean wind speed gradient is found in the coastal gradient plot (S) (not shown). 

Finally, at the Alpha ventus wind farm, the smallest wind farm in terms of installed capacity and area, 

there is observed wake wind speed deficit at around 180°. The wind farm wake is not as pronounced as 

for the larger wind farms investigated. This is expected due to the size of the wind farm. The coastal 

gradient is not observed in the result but is noted in the coastal wind speed gradient (S) (not shown). 

6. Discussion 

The very long wind farm wakes observed in the RADARSAT-2 scene have in qualitative terms 

successfully been modeled both by the PARK and WRF model at several wind farms in the southern 

North Sea. The comparison is qualitative due the different nature of data. The SAR-based results are 

near-instantaneous observations of the sea surface while wake model results are time-averaged results 

withbest representation of the conditions at around hub-height. Thus we focus on the apparent wind farm 

wake direction and the length of the wakesin this comparison instead of the wake deficit at any given 

location. The SAR image has the advantage of clear visible wake features. Thus the retrieved wind field 

can be used to evaluate the wake model results in qualitative terms. 
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We are interested in developing more robust SAR-based wind farm wake data representation for the 

evaluation of wake models. Therefore the climatology of wind farm wake is necessary. The Envisat 

ASAR data of wind fields enable us to study the wind farm wake at Horns Rev 1 and 2 with the data set 

divided into 12 wind directional bins. The results are compared to the PARK model. Occasionally good 

agreement is found but due to strong coastal wind speed gradients, bathymetry effects and too few 

samples firm conclusions cannot be drawn. 

The new method, in which the wind field maps are rotated, overcomes two of the main issues when 

trying to isolate the wind farm effect of the wake on the wind fields: the low number of samples and the 

coastal gradient. The first advantage is that the inflow wind is aligned (rotated) with 1° bins instead of 

30° bins. This gives more certainty that the deepest wind farm wake are overlapping in the aggregated 

results. With the inflow wind speed used to normalize the winds in the wake, the wake are clearly seen 

but at the same time a residual of the coastal gradient is often noted, e.g., at Horns Rev 1. The clearest 

wind farm wake results are typically obtained using the side lobe winds for normalization, the wake 

wind speed deficit method (SD). This is not too surprising as the coastal wind speed gradients at most 

wind farms are significant and the circles used around the large offshore wind farms need to be at some 

distance. Therefore any inhomogeneity in the flow, most importantly the coastal gradient, but in fact 

also meandering and other atmospheric features gain importance. Also in [2] the nearby parallel transects 

winds along the wind farm wake were optimal for normalization, rather than the inflow winds upwind 

of the wind farm. 

The number of samples at Horns Rev 2 is 303 while at Horns Rev 1 it is 835. So the lower number of 

samples at Horns Rev 2 could be one reason for the lesser clarity in data at this site when compared to 

Horns Rev 1. Also the influence of the Horns Rev 1 wind farm wake may hinder full interpretation at 

Horns Rev 2 in particular at radii far from the Horns Rev 2 wind farm. Finally it should be mentioned 

that the Horns Rev 1 wind farm has a geometric shape (turbine lay-out) more convenient for the proposed 

new methodology of analysis than that of the Horns Rev 2 wind farm. We assume that all wind turbines 

are in operation at all times a characteristic which may not be fulfilled. 

The SAR-based aggregated wind farm wake data compare well both to the WRF simulations and the 

PARK model results. It is the first time that assessment of the wind farm wake climatology has been 

attempted based on SAR (to our knowledge) and the results are promising. The main importance of the 

establishment of SAR-based wake wind speed aggregated results is for the validation of wind farm wake 

models in the far-field wake region where other observations are extremely limited. In the future more 

wind farms will operate offshore thus cluster-scale wind farm wake therefore become an even more 

important focus area. It is suggested to continue this type of research using new SAR data from the 

Sentinel-1 mission. 

7. Conclusions 

The case study based on a RADARSAR-2 scene is a unique situation with fairly homogeneous flow 

across the southern North Sea. The observed wind farm wakes are visible in the SAR scene and thus 

appealing for demonstration. Both WRF and PARK reproduce the observed very long wind farm wakes 

convincingly regarding their direction and extent. SAR archive renders possible climatology studies. 
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The available Envisat ASAR data archive at Horns Rev is the most comprehensive. It has therefore 

been used for geo-located wind farm wake climatology studies. However the results are only 

occasionally clear for interpretation due to the limited number of samples per 30° sectors, the coastal 

wind speed gradient and oceanic bathymetry effects in SAR at Horns Rev. 

The key results are based on a new methodology of rotating wind maps. By applying the new 

methodology to SAR-based wind fields, mesoscale model WRF and microscale model PARK results 

comparable aggregated wind farm wake results are obtained. The SAR-based findings strongly support 

the model results at Horns Rev 1. The new methodology increases the number of samples, aligns the 

wind direction of inflow much more accurately (1° bins) and in most cases but not always overcome the 

coastal wind gradient. The most convincing results are obtained for the wind wake deficit results in 

which the side lobe winds are used for normalization. 

Acknowledgments 

Support from the European Energy Research Alliance-Design Tools for Offshore wind farm Clusters 

(EERA DTOC) project FP7-ENERGY-2011-1/n 282797 and satellite images from RADARSAT-2 from 

Data and Products © MacDonald, Dettewiler and Associates Ltd and Envisat ASAR data from the 

European Space Agency are acknowledged. We are thankful to the Northern Seas Wind Index Database 

(NORSEWInD) project for the Envisat ASAR wind field archive processed by Alexis Mouche. 

Author Contributions 

Charlotte Bay Hasager coordinated the main theme of this paper and wrote the manuscript.  

Pauline Vincent and Romain Husson processed the RADARSAT-2 scene, identified the wind farm 

wakes and retrieved the wind speed. Jake Badger and Alessandro Di Bella developed the new 

methodology of rotating the wind maps for aggregated wake results and Alessandro Di Bella 

programmed and applied the methodology on Envisat ASAR wind fields and WRF model results and 

produced the graphics. Merete Badger prepared the Envisat ASAR wind field archive and extracted all 

information for the wake research. Alfredo Peña programmed the PARK model in Matlab and produced 

results and graphics. Patrick Volker set up the WRF model and produced the results used for wake 

comparison. All authors discussed the research results and commented on the manuscript. All the authors 

read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Christiansen, M.B.; Hasager, C.B. Wake effects of large offshore wind farms identified from 

satellite SAR. Remote Sens. Environ. 2005, 98, 251–268. 

2. Christiansen, M.B.; Hasager, C.B. Using airborne and satellite SAR for wake mapping offshore. 

Wind Energy 2006, 9, 437–455. 



Energies 2015, 8 5438 

 

 

3. Li, X.; Lehner, S. Observation of TerraSAR-X for Studies on Offshore Wind Turbine Wake in near 

and Far Fields. IEEE 2013, 5, 1757–1768. 

4. Hasager, C.B.; Vincent, P.; Husson, R.; Mouche, A.; Badger, M.; Peña, A.; Volker, P.; Badger, J.; 

Di Bella, A.; Palomares, A.; et al. Comparing satellite SAR and wind farm wake models. J. Phys. 

Conf. Ser. 2015, 625, in press. 

5. Hasager, C.B.; Mouche, A.; Badger, M.; Bingöl, F.; Karagali, I.; Driessenaar, T.; Stoffelen, A.; 

Peña, A.; Longépé, N. Offshore wind climatology based on synergetic use of Envisat ASAR, 

ASCAT and QuikSCAT. Remote Sens. Environ. 2015, 156, 247–263. 

6. Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical 

cyclones by high-resolution scatterometry. J. Geophys. Res. 1998, 103, 7767–7786. 

7. Katic, I.; Højstrup, J.; Jensen, N.O. A simple model for cluster efficiency. In Proceedings of the 

European Wind Energy Association Conference & Exhibition, Rome, Italy, 7–9 October 1986. 

8. Mortensen, N.G.; Heathfield, D.N.; Myllerup, L.; Landberg, L.; Rathmann, O. Getting Started with 

WAsP 9; Tech. Rep. Risø-I-2571(EN); Risø National Laboratory: Roskilde, Denmark, 2007. 

9. Jensen, N.O. A Note on Wind Generator Interaction; Tech. Rep. Risø-M-2411(EN); Risø National 

Laboratory: Roskilde, Denmark, 1983. 

10. Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda. M.; Huang, X.Y.; 

Wang, W.; Powers, J.G. A description of the advanced research WRF version 3. Tech. Rep.  

2008, doi:10.5065/D68S4MVH. 

11. Adams, A.S.; Keith, D.W. A wind farm parametrization for WRF. Available online: 

http://www2.mmm.ucar.edu/wrf/users/workshops/WS2007/abstracts/5-5_Adams.pdf (accessed on 

2 June 2015). 

12. Baidya Roy, S. Simulating impacts of wind farms on local hydrometeorology. J. Wind Eng. Ind. 

Aerodyn. 2011, 99, 491–498. 

13. Blahak, U.; Goretzki, B.; Meis, J. A simple parametrisation of drag forces induced by large wind 

farms for numerical weather prediction models. In Proceedings of the European Wind Energy 

Conference & Exhibition 2010 (EWEC), Warsaw, Poland, 20–23 April 2010. 

14. Jacobson, M.Z.; Archer, C.L. Saturation wind power potential and its implications for wind energy. 

Proc. Natl. Acad. Sci. USA 2012, 109, 15679–15684. 

15. Fitch, A.; Olson, J.; Lundquist, J.; Dudhia, J.; Gupta, A.; Michalakes, J.; Barstad, I. Local and 

mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Weather Rev. 

2012, 140, 3017–3038. 

16. Volker, P.J.H.; Badger, J.; Hahmann, A.H.; Ott, S. The Explicit Wake Parametrisation V1.0:  

A wind farm parametrisation in the mesoscale model WRF. GMDD 2015, 8, 3481–3522. 

17. Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the 

atmospheric boundary layer. J. Meteorol. Soc. Jpn. 2009, 87, 895–912. 

18. Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol. 

2004, 43, 170–181. 

19. Thompson, G.; Field, P.R.; Rasmussen, M.; Hall, W.D. Explicit forecasts of winter precipitation 

using an improved bulk micro- physics scheme. Part II: Implementation of a new snow 

parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. 



Energies 2015, 8 5439 

 

 

20. Mlaver, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for 

inhomogeneous atmosphere: RRTM, a validated corrected-k model for the long wave. J. Geophys. Res. 

1997, 102, 16663–16682. 

21. Dudhia, J. Numerical study of convection observed during the wind monsoon experiment using a 

mesoscale two-dimensional model. J. Atmo. Sci. 1989, 46, 3077–3107. 

22. Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn  

State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 

2001, 129, 569–585. 

23. Uppala, S.M.; Kallberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.; Fiorino, M.; Gibson, J.K.; 

Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc. 

2005, 131, doi:10.1256/qj.04.176. 

24. Barthelmie, R.J.; Badger, J.; Pryor, S.C.; Hasager, C.B.; Christiansen, M.B.; Jørgensen, B.H. 

Offshore coastal wind speed gradients: Issues for the design and development of large offshore 

windfarms. Wind Eng. 2007, 31, 369–382. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 



1ScIentIfIc REPORtS |  (2018) 8:2163  | DOI:10.1038/s41598-018-20389-y

www.nature.com/scientificreports

First in situ evidence of wakes in the 
far field behind offshore wind farms
Andreas Platis1, Simon K. Siedersleben2, Jens Bange1, Astrid Lampert3, Konrad Bärfuss3, 
Rudolf Hankers3, Beatriz Cañadillas4, Richard Foreman4, Johannes Schulz-Stellenfleth5, 
Bughsin Djath5, Thomas Neumann4 & Stefan Emeis  2

More than 12 GW of offshore wind turbines are currently in operation in European waters. To optimise 
the use of the marine areas, wind farms are typically clustered in units of several hundred turbines. 
Understanding wakes of wind farms, which is the region of momentum and energy deficit downwind, 
is important for optimising the wind farm layouts and operation to minimize costs. While in most 
weather situations (unstable atmospheric stratification), the wakes of wind turbines are only a local 
effect within the wind farm, satellite imagery reveals wind-farm wakes to be several tens of kilometres 
in length under certain conditions (stable atmospheric stratification), which is also predicted by 
numerical models. The first direct in situ measurements of the existence and shape of large wind farm 
wakes by a specially equipped research aircraft in 2016 and 2017 confirm wake lengths of more than 
tens of kilometres under stable atmospheric conditions, with maximum wind speed deficits of 40%, and 
enhanced turbulence. These measurements were the first step in a large research project to describe 
and understand the physics of large offshore wakes using direct measurements, together with the 
assessment of satellite imagery and models.

Offshore wind farms contribute a considerable fraction to the production of renewable electrical energy. In 2015, 
12 GW of offshore wind-energy capacity was successfully installed in Europe1. In Germany offshore capacity is 
expected to reach 7.8 GW by 20202. In Europe, it is expected to reach 73 GW by 20303. A significant number of 
these new installations will be in the North and Baltic Seas4,5.

For an optimal use of the marine areas6, wind farms are constructed at favourable locations and in clusters 
(see Fig. 1). As wind farms are built to extract considerable kinetic energy from the atmosphere, a downwind 
wake region is formed, characterised by a reduced mean wind speed and, additionally, an enhanced level of tur-
bulence. Most research in this area focuses on wakes behind single turbines, and on the wake interaction from 
a larger number of turbines within one and the same wind farm7. Only some experimental and recent numeri-
cal studies consider the wakes of entire wind farms and the impact of wakes on neighbouring downwind wind 
farms on a larger spatial scale6,8–22. The spatial extension of wakes from offshore wind farms is not understood 
to the extent that the length of a wake may be predicted based on all influencing parameters, such as wind-farm 
characteristics, atmospheric conditions, and sea state23. The most efficient mechanism for wake recovery is the 
vertical transfer of momentum from higher atmospheric layers downwards24, implying atmospheric turbulence 
to be the decisive parameter governing wake recovery16,25,26. Atmospheric turbulence is primarily produced from 
vertical wind speed gradients (mechanical turbulence) and thermal convection (thermal turbulence). Over rough 
land surfaces, both mechanical and thermal turbulence are abundant and wakes are usually short (at maximum 
a few kilometres in length). Much less turbulence is produced at sea, because of the small surface friction and 
weak temperature gradients, since the response of the ocean to solar radiation is slow. The wakes from wind 
farms over the sea are, therefore, expected to extend further downwind than over land, especially under a stably 
stratified flow, which inhibits thermally produced turbulence5,27. Since offshore wind farms are located close to 
the coastline (i.e. a distances less than 100 km to the coast), warm air from land may flow over the colder sea to 
generate stable stratification, especially during spring and summer. While not yet verified by direct in situ meas-
urements, analytical20,24,28 and numerical flow models13,22,29,30 predict the length of far wakes up to 100 km in 
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stable stratification. Further, satellite images from synthetic aperture radar (SAR) suggest the existence of wake 
lengths of several tens of kilometres (Fig. 2) under stable atmospheric conditions, i.e., in the absence of thermally 
produced turbulence31,32. However, such images are rare as the repeat cycle of the satellite is about 11–12 days and 
lack some observational verification in addition.

Verification of numerical and analytical models and SAR is difficult because in situ measurements of offshore 
wind-farm wakes only exist in the near field, directly behind single turbines and wind farms22,33,34. In fact, in situ 
measurements of far-field wakes at hub height on a larger scale behind whole offshore wind farms are not cur-
rently available. The German research project WIPAFF (WInd PArk Far Field)35 has performed the first aircraft 
measurements of the far wakes of wind farm clusters in the North Sea. We summarise the first measurements 
here and compare them with numerical simulations of the Weather Research and Forecasting model (WRF)36.

Methods
Table 1 gives an overview of all 41 measurement flights performed during the WIPAFF project with the 
Dornier DO 128 aircraft (Fig. 3) in 2016 and 2017 over the German Bight. The starting points of all flights were 
Wilhelmshaven, Borkum or Husum airport. The aircraft airspeed during the measurements was 66 m s−1.

Meteorological data. The wind vector measurement is performed by measuring the flow speed and flow 
angles at the aircraft nose with a multi-hole flow probe (Figs 3 and 4), as well as the aircraft’s motion and orien-
tation in the geodetic coordinate system with an inertial measurement unit (IMU) and the ground speed vector 

Figure 1. Distribution of offshore wind farms in the German Bight. Blue regions are farms currently in 
operation and orange regions are those wind farms that are under construction or have been approved (as of 
2017). Red polygons indicate farms with a submitted application (as of 2016). The plot on the left side indicates 
the flight track of Flight 7 on September 10, 2016. The blue dots represent the location of the individual wind 
turbines.

Figure 2. Example of a SENTINEL-1A satellite SAR image (Copernicus Sentinel data [2015]) acquired over 
the North Frisian Coast in the German Bight on May 22, 2015 at 17:16 UTC with westerly winds created by 
Matplotlib37. The white dots on the lower left are radar signatures from windfarm turbines of the three wind 
parks Amrumbank West, Nordsee Ost and Meerwind Süd/Ost. A wake of reduced wind speed generated by the 
wind turbines is indicated by darker streaks downwind of the wind farms.
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Flight code
Date (dd.
mm.yyyy)

Start Time 
(UTC)

End Time 
(UTC) WS (m s−1) Wind dir (°) Wake length (km)

Atmospheric 
stratification

September

 Flight 1 06.09.2016 14:13 17:20 7 190 25 stable

 Flight 2 07.09.2016 09:25 13:00 4 210 20 stable

 Flight 3 07.09.2016 10:00 14:00 4 190 at least 10 stable

 Flight 4 08.09.2016 10:38 14:25 8 120 at least 40 stable

 Flight 5 09.09.2016 10:54 14:50 6 240 at least 45 stable

 Flight 6 09.09.2016 15:43 19:17 6 250 at least 5 unstable

 Flight 7 10.09.2016 07:30 11:30 7 190 45 stable

 Flight 8 10.09.2016 12:05 16:00 4 190 at least 20 stable

March–April

 Flight 1 30.03.2017 15:57 19:02 15 240 70 stable

 Flight 2 31.03.2017 15:36 19:00 13 180 50 stable

 Flight 3 05.04.2017 15:42 16:34 14 310 10 neutral

 Flight 4 06.04.2017 15:29 18:22 8 310 at least 10 unstable

 Flight 5 09.04.2017 12:36 16:07 7 220 at least 50 stable

 Flight 6 09.04.2017 16:32 20:12 4 200 n.a. stable

 Flight 7 11.04.2017 11:25 15:10 8 300 5 unstable

 Flight 8 11.04.2017 16:12 20:04 8 240–280 25 neutral

 Flight 9 13.04.2017 13:35 17:39 16 290 10 neutral

May–June

 Flight 1 17.05.2017 12:35 16:28 8 110 n.a. stable

 Flight 2 17.05.2017 17:16 21:22 12 120 55 stable

 Flight 3 23.05.2017 15:42 16:34 5 250 at least 25 stable

 Flight 4 23.05.2017 13:18 17:15 11 310 at least 35 neutral

 Flight 5 24.05.2017 07:40 11:34 8 300 n.a. unstable

 Flight 6 24.05.2017 12:13 16:11 9 270 5 unstable

 Flight 7 27.05.2017 09:57 13:58 10 150 at least 50 stable

 Flight 8 27.05.2017 14:39 18:36 12 140 55 stable

 Flight 9 31.05.2017 09:58 13:46 8 290 2 unstable

 Flight 10 31.05.2017 15:00 18:50 9 290 0 unstable

 Flight 11 01.06.2017 08:55 12:54 6 300 0 unstable

 Flight 12 02.06.2017 08:55 12:40 4 170 at least 15 stable

August

 Flight 1 08.08.2017 10:35 14:35 9 80 at least 35 stable

 Flight 2 08.08.2017 15:06 19:07 14 80 at least 55 stable

 Flight 3 09.08.2017 10:34 14:37 15 210 n.a. unstable

 Flight 4 09.08.2017 15:09 19:05 13 240 n.a. unstable

 Flight 5 10.08.2017 12:49 16:54 5 330 n.a. unstable

 Flight 6 14.08.2017 12:08 16:07 8 150 at least 35 neutral

 Flight 7 14.08.2017 16:40 20:31 7 120 50 stable

 Flight 8 15.08.2017 09:22 13:15 8 180 30 stable

 Flight 9 17.08.2017 08:06 12:10 12 160 40 stable

October

 Flight 1 14.10.2017 14:59 18:40 15 260 n.a. stable

 Flight 2 15.10.2017 09:05 13:09 14 200 n.a. unstable

 Flight 3 15.10.2017 13:52 17:50 13 190 at least 25 stable

Table 1. Full list of all measurement flights conducted within the WIPAFF project. Wake length: Assessed wake 
distance with a wind speed deficit with more than 0.1 m s−1 compared to the undisturbed flow. Wake lengths 
measured during a flight pattern that did not cover the full extent of the wake are indicated with “at least”. Some 
flights focused on the processes above wind farms, hence, no data is available describing the length of the wakes, 
for such flights the wake length is not available (n. a.). Atmospheric stratification: Estimation of the atmospheric 
stability by analysing the airborne measured potential temperature vertical profiles between near surface (30 m) 
and hub height (100 m), which were flown close to the wind farm. WS means wind speed. Bold text marks the 
investigated flight in this study.
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with a combination of IMU and GPS. More details on the aircraft’s sensor system can be found in38–40. The total 
duration of a measurement flight lasted 2 to 4 h, and the main downwind flight pattern lasted about 1 h as shown 
in Fig. 1. The data acquisition rate is 100 Hz. Given the information of these sensors, the wind speed can be cal-
culated as

= + + Ω ×u v M v s( ), (1)gs tas

where u is the wind speed vector, vgs is the ground speed vector, vtag is the airspeed vector, M is the rotation matrix 
from the aircraft’s fixed coordinate system with respect to the geodetic coordinate system, and s is the lever arm 
between the IMU and the flow probe. The rate of angular rotation vector Ω contains the angular velocities of the 
aircraft fixed coordinate system relative to the geodetic coordinate system, and is among the primary output data 
of the IMU. A detailed description of the airborne wind speed measurement, including an error estimation, can 
be found in33 and41.

The turbulent kinetic energy, TKE is calculated by

σ σ σ= + +TKE 1
2

( ) (2)u v w
2 2 2

with σu representing the fluctuations of the wind vector component u, σv of the component v and σw of w.
For example, σu is computed as

∑σ =
−

−
=N

u n u1
1

( ( ) ) ,
(3)u

n

N
2

1

2

where N is the number of data points within the moving data window and u  denotes the average of u within the 
window. To study the variability of the wind speed field and TKE, it is necessary to determine a suitable horizontal 
length scale over which to compute the mean wind speed and the fluctuation σ of the wind components within 

Figure 3. The research aircraft Dornier DO-128 of the Technische Universität Braunschweig.

Figure 4. Instrumentation of the nose boom of the DO-128.



www.nature.com/scientificreports/

5ScIentIfIc REPORtS |  (2018) 8:2163  | DOI:10.1038/s41598-018-20389-y

sub-legs (data windows) along a flight leg. The method is the so-called moving-average method. Given a series of 
values (the total data point along one flight leg) and a fixed subset size (sub-legs), the first element of the moving 
average is obtained by taking the average of the initial fixed subset of the time series. The subset is then modified 
by a forward shift, so that the first value of the series is excluded, while including the next value following the 
original subset in the series to create a new subset of numbers for averaging. The process is repeated over the 
entire data series.

However, sub-legs not exceeding the largest eddies in size insufficiently sample the dynamic wind field, caus-
ing a systematic error by systematically under- or overestimating the turbulent wind and its standard deviation42. 
This sampling error can be estimated by the expression stated in43 and44 representing the absolute systematic 
statistical uncertainty of the standard deviation σu related to a single flight leg on which σu was calculated,

σ σ∆ = ⋅
L
P

2 ,
(4)u

u

l
u

where Lu is the integral length scale45 of u and Pl the averaging length. The Lu can be explained as the correlation 
time, i.e. the persistence or memory of the turbulent flow46. The integral time scale Iu for the wind speed u is

∫ ∫τ τ τ
τ

σ
=

′ + ⋅ ′

′
=

τ τ
I d u t u t

u
d( ) ( ) Cov ( ) ,

(5)
u

u

u0 2 0 2
1 1

where Covu represents the covariance of u, and is calculated by integration from zero lag to the first zero crossing 
at τ1

47. The transformation into the Lu is carried out by multiplication of the Iu by the aircraft’s ground speed, 
assuming that Taylor’s hypothesis of frozen turbulence is valid45. For example, the integral length scale for the 
wind speed u for Flight 7 is about 90 m. To obtain an error of less than 10% of σu, the window length should be at 
least 1800 m according to Eq. 4. We have defined windows of 2-km width using unweighted means, sequentially 
shifted through the leg by increments of 0.66 m for a sampling rate of 100 Hz and an aircraft ground speed of 
66 m s−1. As σu is about 0.1 m s−1 for Flight 7, the error for the measured wind speed u is 1%.

Scanning lidar. We recorded sea surface measurements using a scanning LiDAR-system supported by a 
navigation grade IMU for registering the measurement points. The effective pulse rate of 22 kHz theoretically 
provides spatial-point densities of one per metre along, and five per metre perpendicular to, the flight direction 
for an effective overall measurement rate of about 4.5 kHz. In addition to spatial information, the calibrated echo 
amplitude is used to compute the reflectance relative to a perpendicular white target at the same distance.

Data have been calculated as the average relative reflectance over 2 s. Fewer measurement points were received 
within the wake because of the smoother sea surface. In the averaged data set, this resulted in a generally higher 
reflectance inside the wake caused by more specular reflections.

Numerical model WRF. We conducted numerical simulations with the Weather Research and Forecasting 
Model WRF (Version 3.7.1)36 using three nested domains with grid size of 15 km, 5 km and 1.7 km. The nesting 
allows feedback between the nested domains with an update frequency of 20 s for the second domain and 60 s for 
the first domain. All model domains have 50 vertical levels with a spacing of approximately 40 m at the rotor area. 
The model top is at 100 hPa (=16 km). The initial and lateral boundary conditions are defined by the European 
Centre for Medium-Range Weather Forecasts (ECMWF) model operational analysis data at 6-h intervals. The 
ECMWF data has a grid size of 0.1 degrees (i.e. similar to the grid size of the first domain). The model is initialised 
at 12 UTC, 9 September 2016 (i.e. 19 h before the first measurements) and integrated for 36 h.

The following parametrizations are used for all domains: The NOAH land surface model48, the WRF 
double-moment 6-class cloud microphysics scheme (WDM649), the Rapid Radiative Transfer Model for the GCM 
scheme for short- and longwave radiation50 and the Mellor-Yamada-Nakanishi-Niino boundary-layer parametri-
zation51. The ocean surface roughness is determined by a modified Charnock relation52. In contrast to the two 
innermost domains, the outermost domain uses the Kain-Fritsch cumulus parametrization scheme53.

Wind farm parameterization. The grid size of the numerical model WRF is too large to capture the effect 
of a single wind farm explicitly. Therefore, we use the wind farm parametrization of Fitch et al.13, which acts as a 
momentum sink for the mean flow and as a source of turbulence at the height of the rotor. The wind turbines at 
the wind farms Amrumbank West (AW), Windpark Meerwind Süd/Ost (WM) and Nordsee Ost (OWPN) have 
a hub height ranging from 90 m to 95 m and a diameter of 120 m up to 126 m. Therefore, the rotor area of the 
wind turbines intersects with three model levels. The effects of the wind turbine towers on the atmosphere are 
neglected.

A wind turbine extracts kinetic energy from the atmosphere, with the total extracted fraction from the atmos-
phere described by the thrust coefficient CT. Only a fraction of the extracted kinetic energy is converted into 
electrical energy as quantified by the power coefficient CP. The difference between CT and CP stems from electrical 
and mechanical losses, and the production of non-productive drag. By neglecting the electrically and mechani-
cally induced losses and assuming that all non-productive drag is converted into electrical energy, the difference 
CT − Cp describes the amount of kinetic energy that is extracted from the mean flow and then converted into 
turbulent kinetic energy13.

The coefficients CT and Cp are a function of wind speed and depend on the type of turbine13. The three wind 
farms of interest (AW, WM, OWPN) have two different wind turbine types: At AW and WM, Siemens SWT 
3.6–120 offshore turbines are installed whereas at OWPN, Senvion 6.2 wind turbines are used, with nominal 
powers of 3.6 MW and 6.2 MW, respectively. Since CT and Cp for these turbines are unavailable to the public, we 
adapt coefficients from the wind turbine Siemens SWT 3.6–120 onshore, as these are available online (see http://
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www.wind-turbine-models.com/turbines/646-siemens-swt-3.6–120-onshore). The model underestimates the 
wind at hub height by up to 1 m s−1. Furthermore, the parametrisation of Fitch et al.13 neglects the dependence of 
the power and thrust coefficients on the stability of the atmosphere. Therefore, the power and thrust coefficients 
chosen in the present study are only a suitable first approximation.

Measurements of wind-farm wakes in the far field. In situ observations from fixed platforms like 
FINO 1 are available, but do not provide the spatial sampling required to study the three-dimensional structure 
of wakes. The institutes involved in the WIPAFF project were aware of these shortcomings in currently available 
data sources. Therefore, we collected in situ data with the research aircraft Dornier DO-128 belonging to the 
Technische Universität Braunschweig, Germany. Measurement flights delivered wind speed and direction, tur-
bulence, temperature, humidity, surface-temperature and sea-state data at high resolution (sampling frequency 
100 Hz), similarly to campaigns documented in38,39. A laser scanner was also integrated into the research aircraft 
to determine sea-surface properties.

We performed 41 measurement flights between September 2016 and October 2017 downwind of wind farm 
clusters, such as Amrumbank West and Godewind located in the German Bight (Table 1). We discuss the results 
of Flight 7 on September 10, 2016 here as a typical example for the wake extent during moderate wind speeds of 
7–10 m s−1 and under stable conditions. Throughout the September 2106 campaign, a dominant high-pressure 
system was located over Central and Eastern Europe, resulting in the advection of warm sub-tropical air over 
the German Bight from the south. The warm air over the colder water during the campaign resulted in stable 
atmospheric stratification (i.e. no thermal turbulence and, therefore, the prevention of convective motion), which 
is favourable for the generation of long wakes. By vertical profiling of the lower atmosphere with the aircraft, we 
observed stable conditions over the sea during the September 2016 campaign during 7 flights, where wakes over 
the whole flight range up to 45 km were detected. In total we detected wakes with a length of at least 10 km during 
27 cases, the longest wake length was 70 km (see Table 1). The flight pattern of Flight 7 on September 10 shown 
in Fig. 5a)–c) measured both the undisturbed air flow and the wake dispersion downwind from the wind farm 
cluster Amrumbank West, Nordsee Ost and Meerwind Süd/Ost with 90% of the wind turbines running. Several 
flight legs of 40 km length positioned perpendicular to the mean wind direction and staggered (5, 15, 25, 35, 
45 km) behind the wind farm captured both the wake and the adjacent undisturbed air flow at hub height (90 m) 
of the wind turbines.

Wind speed measurements from Flight 7 are shown in Fig. 5a), where data recorded from individual legs are 
linearly interpolated, and displayed as coloured contours. Behind the wind farm, a zone of reduced wind speed 
extended to at least 45 km, with a wind speed deficit up to 3 m s−1 at 5 km downwind and about 1 m s−1 at 45 km 
behind the wind farm resulting in a maximum wind speed deficit of 40%. In this manuscript we refer to wind 
speed deficit as the difference between the flow within the wake and the undisturbed flow outside of the wake on 
the western side along each flight leg (where the maximum wind speed was measured) instead of using the wind 
speed measured upstream of the wind farms as a reference. This definition is necessary because of two reasons. 
First, the wind speed has a gradient from East to West. Therefore, it would be difficult to define an upstream 
wind speed. Secondly, the upstream wind speed decreased during field experiment. Hence, using the upstream 
measured wind speed as reference would lead to an underestimation of the wind speed reduction. The wind 

Figure 5. (a) Wind speed measurements at hub height (90 m) from the DO 128 flight on September 10, 2016 
08:30–09:30 UTC (Flight 7). The wind speed measured along the flight track (black lines) is linearly interpolated 
perpendicular to the mean wind direction (south 190, indicated by the black arrow). Black dots mark the 
position of the wind turbines of the wind farms Amrumbank West, Nordsee Ost and Meerwind Süd/Ost. The 
geographical GPS-coordinates are converted into a Cartesian coordinate system aligned with the mean wind 
direction (190) for a better comprehension of the orientation and length of the wake. (b) As in Fig. 5a), but for 
the dimensionless reflectance of the sea surface. A higher reflectance may be interpreted as a lower wind speed 
near the ocean surface. (c) As in Fig. 5a), but for the TKE.
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speed deficit in the wake is aligned along the mean wind direction. The wake sector has the width of the wind 
farm (10 km) for the closest flight legs (at 5 km and 10 km downwind) and no pronounced spreading out can be 
detected with increasing distance from the wind farm.

A lower wind speed results in a smoother water surface. The smoothness of the water surface was measured by 
laser reflectance aboard the aircraft using the downwards-looking laser scanner (Sect. Methods). The scattering of 
the signal transmitted by the laser is less diffuse for smoother water, hence, the probability of a specular reflection 
in the direction of the sensor is higher. This effect of increased reflectance at low wind speeds is well known from 
microwave radar altimeter studies54, which we use to help visualise the far wake and relate to SAR images. As 
shown in Fig. 5b), we measured a higher reflectance by a factor of four inside the wake than in the neighbouring 
region, indicating lower wind speeds in the wake during Flight 7. In situ wind speed measurements (Fig. 5a) and 
laser reflectance (Fig. 5b) both show a wake throughout the whole scanning area of 45 km downwind of the wind 
farm. Furthermore, Fig. 5a) and b) display a horizontal wind speed reduction from west to east (i.e. perpendicular 
to the mean wind direction) caused by the higher surface friction along the coast, east of the flight path.

Turbulence in the far wake. The degree of atmospheric turbulence impacts the efficiency and fatigue 
loading of a wind turbine55. A typical parameter to describe turbulence is the turbulent kinetic energy (TKE) 
described in Sect. Methods. Measurements of TKE reveal a far downwind dispersion of the turbulence produced 
by the wind farm and as a result of the mixing of the wake with the undisturbed flow (Fig. 5c). A slender wake of 
TKE with a width less than 5 km is aligned with the western edge of the wind farm. A stronger horizontal wind 
speed gradient exists between the decelerated wind field in the wake and undisturbed wind field to the west. The 
eastern edge of the wake is much less pronounced as a result of the lower wind speeds along the coast. Inside the 
wake less turbulence is produced due to a lower wind speed than in the undisturbed flow outside the wake, thus 
TKE is smaller. Moreover, the eastern boundary of the cluster of wind farms is more irregular compared with the 
western edge (see Fig. 5c). The TKE of 0.5 m2 s−2 in the wake sector is about five times that in the undisturbed air 
flow and decays slowly after 10 km to about 0.3 m2 s−2. An elevated level of TKE remains at even 45 km downwind 

Figure 6. (a) WRF model simulation of the wind field at hub height (90 m) for 10 September 2016 08:30 UTC. 
(b) WRF model simulation for 09:30 UTC on the same day. The flight pattern over the German Bight is marked 
by the black line, the measurement flight domain according to Fig. 5a)–c) by grey dashed line, German and 
Danish coast by black lines and wind turbines by black dots. Grey line indicates a cross-section of the wind 
speed, which is displayed in Fig. 7. The figures were generated with Matplotlib37.

Figure 7. Cross-section along the wake as marked in Fig. 6 of the WRF simulations at 08:30 UTC (red) and 
09:30 UTC (purple) and the in situ data (blue). Error bars indicate the estimated wind measurement error as 
explained in Section Meteorological data.
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of the wind farm. Within the eastern part of the wake, the TKE remains lower (below 0.1 m2 s−2) than in the 
undisturbed flow (0.1–0.25 m2 s−2) at least 45 km downwind on account of the lower wind speeds and reduced 
horizontal wind shear.

Comparison with model simulations. We performed numerical simulations of the wake using the wind 
farm parametrisation of Fitch et al.13 within the Weather Research and Forecasting Model for a grid size of 1.6 km. 
Operational analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) provided 
the initial and lateral boundary conditions. The model results (Fig. 6) have been obtained for two times at the 
beginning of the measurement pattern and at the end.

The model simulations reveal a similar structure and orientation of the far wake for the 10 September 2016 
as observed by the airborne data (Fig. 6), with a wind speed of about 6 m s−1 at the first flight leg 5 km downwind 
(08:30 UTC) and 7.3 m s−1 at the last flight leg (09:30 UTC) 45 km downwind (Fig. 7). However, the observations 
indicate higher wind speeds within the wake than the simulations (Fig. 7). This finding is consistent with the 
wind speed observations taken upwind of the wind farm where the model is underestimating the wind speed. 
Consequently, the wind speed within the wake has to be lower than the in situ data, otherwise the wind farm 
parameterization would underestimate the wind speed deficit induced by the wind farm.

The wind speed averaged over the measurement domain during the flight decreases from approximately 
7 m s−1 (08:30 UTC) to 5 m s−1 (09:30 UTC), which is consistent with flight measurements. The attenuated wind 
field along the coast observable in the simulations matches well with in situ observations (Fig. 5a).

Discussion
As expected from the results of remote sensing observations, numerical and analytical studies13,20,22,24,28,30–32,56,57, 
the wind speed deficits downwind of offshore wind farms tend to be larger in stable than in unstable conditions, 
and the lengths of wakes are longer. Likewise, our aircraft measurements show strong indications for longer wakes 
for all flights under stable situations, whereas wakes were not observed far away from the farms during unstable 
conditions (see Table 1). These first airborne in situ results fortify assumptions from the previous studies. A fur-
ther detailed analysis of the stratification and wake length will be presented in a future work, as an exact stability 
analysis is very complex and must be done for each single flight, which is beyond the scope of this paper.

The question now is how often do stable conditions occur, and are stable conditions coupled to certain wind 
directions? Fig. 8 displays a stability wind rose (32,736 10-min mean values for the relevant wind speed range of 
5 m s−1 to 25 m s−1) from the offshore research platform FINO 158 located in the German Bight to the north of the 
island of Borkum (see Fig. 1) for the whole of the year 2005. While 20% of all values exceed a moderate stability 
of z/L = 0.2, 10% of all values still exceed a stability of z/L = 0.5.

Figure 8. Stability wind rose indicating the frequency (number of 10-min intervals per 12° wind direction 
sector) of atmospheric stability. Lines are labelled in terms of the stability measure z/L, where z is the height 
above ground, and L is the Monin-Obukhov length. Blue and red shading indicates stable and unstable 
stratification, respectively. The higher the value the stronger the stability. Data are from the FINO 1 offshore 
platform in the North Sea for the whole year of 2005 at a height of 60 m above the sea surface. Data is available 
from http://fino.bsh.de/. Only data with wind speeds between the cut-in (5 m s−1) and cut-off (25 m s−1) wind 
speed have been considered.
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Figure 8 also demonstrates a correlation between the wind direction and atmospheric stratification, which 
is typical for mid-latitudes on the northern hemisphere59, resulting from the alternating warm and cold sectors 
of the eastward moving cyclones at this latitude. Stable situations are most likely found for south-west wind 
directions, from which we can infer that this is the most likely direction producing long wakes in the North Sea. 
Further, the predominant wind directions in the North Sea are west and south-west wind directions as 42% of 
all values in Fig. 8 come from the 90 sector from south to west, meaning we expect stable situations from this 
predominant sector about 5% of the time. For wind farms located several tens of kilometres downwind of neigh-
bouring wind farms along the main wind direction, the productivity of the downwind farms may be reduced 
during periods with stable stratification.

Our airborne observations provide the first in situ confirmation of the existence of far wakes extending at least 
45 km downwind from wind farms, confirming the ability of numerical simulations and SAR satellite images in 
capturing the spatial structure of wind-farm wakes. Further analysis for different atmospheric conditions are 
foreseen to provide a clearer quantitative relationship between wind speed, turbulence intensity, atmospheric 
stability and wake length.
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Abstract
This publication synthesizes the results of the WIPAFF (WInd PArk Far Fields) project. WIPAFF focused on
the far field of large offshore wind park wakes (more than 5 km downstream of the wind parks) located in the
German North Sea. The research project combined in situ aircraft and remote sensing measurements, satellite
SAR data analysis and model simulations to enable a holistic coverage of the downstream wakes. The in situ
measurements recorded on-board the research aircraft DO-128 and remote sensing by laser scanner and SAR
prove that wakes of more than 50 kilometers exist under certain atmospheric conditions. Turbulence occurs
at the lateral boundaries of the wakes, due to shear between the reduced wind speed inside the wake and the
undisturbed flow. The results also reveal that the atmospheric stability plays a major role in the evolution
of wakes and can increase the wake length significantly by a factor of three or more. On the basis of the
observations existing mesoscale and industrial models were validated and updated. The airborne measurement
data is available at PANGAEA/ESSD.

Keywords: WIPAFF, wind energy, offshore, wakes, marine boundary layer

1 Introduction

Wind park wakes have found increasing interest in re-
cent years, when industry and authorities have started
to plan wind parks closer together for good reasons
(e.g. nature conservation, bundling of grid access, pub-
lic acceptance), especially in offshore regions. As wind
parks are built to extract kinetic energy from the atmo-
sphere, downwind wake regions form behind turbines
and wind parks, characterised by reduced mean wind
speed and enhanced levels of turbulence (Lissaman,
1979). Both effects downgrade the conditions for down-
stream turbines and wind parks and are thus relevant
for the expected power output from and the endurance
of the installations. However, a deeper understanding of
the physics of atmospheric flow in wind park wakes is
needed to obtain better operational forecasts of wind en-
ergy production or scenario simulations (Veers et al.,
2019; Rohrig et al., 2019).

We distinguish here between the near wake of wind
parks (a few hundreds of metres to a few kilometres be-
hind the parks) where the effects of single turbines are

∗Corresponding author: Andreas Platis, University of Tuebingen, ZAG, En-
vironmental Physics, 72074 Tübingen, Germany, e-mail: andreas.platis@
uni-tuebingen.de

clearly discernible, and the far wake (about five kilome-
tres and more behind the parks) where the wakes of the
single turbines have merged into a more or less uniform
park wake (e.g. Li and Lehner, 2013a). Most research
on wakes so far has focused on near wakes behind sin-
gle turbines and on wake interactions from a larger num-
ber of turbines within one and the same wind park (e.g.,
Martínez-Tossas et al., 2015; Trabucchi et al., 2015).
Only some experimental and recent numerical studies
consider the wakes of entire wind parks and the impact
of far wakes on neighbouring downwind wind parks on a
larger spatial scale (e.g., Chaviaropoulos, 2013; Ny-
gaard and Hansen, 2016; Schneemann et al., 2019).

The impact of far wakes from offshore wind parks on
the regional climate has only been addressed in isolated
studies (e.g., Boettcher et al., 2015) with hardly any
definite conclusions. Recent studies for onshore wind
parks found similar effects of the impact Pryor et al.,
2018. Wind park far wakes are of particular interest
for offshore installations, because turbulence intensity –
which is the main driver for wake dissipation – is much
lower over the ocean than over land. Therefore, wakes
behind offshore wind turbines and wind parks are ex-
pected to be much longer than behind onshore wind
turbines and parks (see e.g., Barthelmie et al., 2007;
Porté-Agel et al., 2020). Analytical studies (Emeis,

© 2020 The authors
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2010; Emeis, 2018; Porté-Agel et al., 2020) as well as
numerical simulations (e.g. Fitch et al., 2012) have pre-
dicted these prolonged wind park wakes as well. Wake
lengths up to about 100 km were found in these simu-
lations (Fitch et al., 2012). Observational evidence of
such long wakes has been available only indirectly so
far from the evaluation of satellite data (Christiansen
and Hasager, 2005).

In situ measurements of the far wakes were missing
before the initiation of the research project WIPAFF
(WInd PArk Far Fields), the main results of which are
reported here. WIPAFF has been funded by the German
Federal Ministry for Economic Affairs and Energy and
ran from November 2015 to April 2019. The main goal
of WIPAFF (Emeis et al., 2016) was – for the first time –
to perform a large number of in situ measurements from
aircraft operations at hub height behind wind parks in
the German Bight (North Sea), to evaluate further SAR
images and to update and validate existing mesoscale
and industrial models on the basis of the observations.
First results from WIPAFF aircraft operations have been
reported by Platis et al. (2018).

This publication is designed to give an integrative
overview on the results of WIPAFF. Results from the
evaluations of the different measurement and modelling
efforts in the project (see Emeis et al., 2016; Djath et al.,
2018; Platis et al., 2018; Siedersleben et al., 2018b;
Siedersleben et al., 2018a; Siedersleben et al., 2020;
Lampert et al., 2020; Platis et al., in review; Djath
and Schulz-Stellenfleth, 2020; Cañadillas et al.,
2020) are put into a common perspective. The airborne
data set of the WIPAFF project is accessible to the
community via the PANGAEA database (Bärfuss et al.,
2019; Lampert et al., 2020). Section 2 gives the initial
hypotheses of the project and Section 3 briefly reviews
methods and their state of the art at the beginning of the
project. The main results of WIPAFF are summarized in
Section 4. Section 5 concludes the study and prepares an
outlook to further necessary research.

2 The WIPAFF project’s initial
hypotheses

Wind turbines generate rotating wake vortices in which
wind speed, turbulence intensity and turbulent fluxes
are modified compared to the undisturbed flow. In a
wind park with many wind turbines arranged in a tight
grid, theses single wakes are considered to superimpose
each other (Martínez-Tossas et al., 2015; Trabucchi
et al., 2015). For the successful planning of further off-
shore parks, it is therefore crucial to identify the param-
eters that affect the wake development. There have been
some model approaches of varying complexity that sim-
ulate these wake processes (Frandsen, 1992; Emeis and
Frandsen, 1993; Vermeer et al., 2003; Emeis, 2010;
Fitch et al., 2012; Fiedler and Adams, 2014; Volker
et al., 2015). A validation, however, of these models has
not yet been available so far due to the lack of large off-
shore wind parks. With the installation of the first large

wind park cluster in the German Bight in the recent
decade, this has become possible now. The WIPAFF
project aimed to understand the wake development in
the lee of wind parks, the corresponding decay dynam-
ics and the size and impact of the wakes downstream of
entire offshore wind parks by considering all influencing
parameters. In the following, we address the four initial
hypotheses of the WIPAFF project.

2.1 Hypothesis 1: Wake appearance is related
to atmospheric stability

The most efficient mechanism for wake recovery is the
vertical transfer of momentum from higher atmospheric
layers downwards by atmospheric turbulence (Emeis,
2010; Abkar and Porté-Agel, 2015a; et al., 2015a;
Emeis, 2018). Because of the small surface friction and
weak temperature gradients over the sea, much less me-
chanical turbulence is produced compared to onshore
sites (Smedman et al., 1997; et al., 2015b) and, hence,
longer wakes are expected. For this reason, surface
roughness and atmospheric stability are regarded to be
the decisive parameters governing the generation of tur-
bulence and thus the wake recovery (Barthelmie et al.,
2009; Barthelmie and Jensen, 2010; Hansen et al.,
2012; Wu and Porté-Agel, 2012; Chaviaropoulos,
2013).

Wakes of several tens of kilometres were expected
to be especially pronounced at offshore locations dur-
ing stable conditions (Hansen et al., 2012). This pre-
sumption of the existence of far wakes was supported
by observational hints of long reaching wakes on satel-
lite images of the sea surface from synthetic aperture
radar (SAR, Figure 2). In stable stratifications, long
wakes with a length exceeding 20 km have been assessed
from synthetic aperture radar data (Christiansen and
Hasager, 2005; Li and Lehner, 2013a).

In addition to the fact that stability may play a very
important role in the generation of far wakes, stud-
ies such as Frandsen et al. (2006); Porté-Agel et al.
(2014); Porté-Agel et al. (2013); Barthelmie et al.
(2009) showed that the wake intensity within the wind
park depends crucially on the wind direction and the
park layout. A larger initial wind speed deficit is ob-
served when the wind direction is parallel to the tur-
bine rows and the turbines are aligned. This larger initial
wind speed deficit was expected to cause longer wakes
according to Emeis (2010).

2.2 Hypothesis 2: Wakes are associated with
increased turbulence

Besides the reduction of the wind speed in the wake,
turbulent effects, such as high turbulent kinetic energy
(TKE) and increased momentum flux were expected.
The degree of atmospheric turbulence impacts the effi-
ciency and fatigue loading of a wind turbine (Lee et al.,
2012). Two factors were considered responsible for the
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production of turbulence. Firstly, the rotating wake vor-
tices by the wind turbines and secondly, the production
of turbulence as a result of the mixing of the wake and
its decelerated wind field with the undisturbed flow. So
far, mesoscale numerical models parameterize wind tur-
bines as elevated moment sinks, and some of them as a
source of TKE (Blahak et al., 2010; Fitch et al., 2012;
Abkar and Porté-Agel, 2015b; Volker et al., 2015).
In large-eddy simulation (LES) studies and wind-tunnel
experiments, these effects were determined at a distance
of almost 20 times the wind turbine rotor diameter d
(20d) (Wu and Porté-Agel, 2012). However, a vali-
dation with in situ measurement data has not yet been
carried out, except in Volker et al. (2015) who used
tower measurements collected during neutral conditions
to evaluate the wind parks parameterizations of Fitch
et al. (2012) and Volker et al. (2015).

2.3 Hypothesis 3: Wakes have the potential to
impact other wind parks downstream

For an optimal use of the marine areas, wind parks are
constructed at favourable locations and in clusters in or-
der to minimize the expense of grid connections and due
to other constraints like military zones, pipelines, and
nature preserves. However, the close proximity can un-
dermine power production in other wind parks down-
stream, due to wakes from upwind wind parks, causing
an economic loss (Kaffine and Worley, 2010; Ny-
gaard, 2014; Nygaard and Hansen, 2016; Bodini
et al., 2017; Lundquist et al., 2019). Simple analytical
models and first studies confirmed that especially during
thermally stable stratification wakes have an impact on
downwind wind parks reducing their efficiency.

2.4 Hypothesis 4: Wakes impact local climate

Large wind farm impose an obstacle in a flat environ-
ment, which decelerate the flow locally associated with
a flow-around and overflow effects. As a result, the tur-
bulent fluxes and heat in the atmospheric boundary layer
(ABL) may change.

It was already known that onshore wind parks can
impact the near surface temperature, and the turbulent
fluxes of sensible heat, CO2, and water vapour (latent
heat) (e.g. Roy and Traiteur, 2010; Zhou et al., 2012;
Rajewski et al., 2013; Rajewski et al., 2014; Arm-
strong et al., 2016). For example, Zhou et al. (2012)
observed a warming of 0.5 K in the vicinity of onshore
wind parks, especially during nocturnal stable condi-
tions. But only a few studies have investigated the poten-
tial effect of offshore wind parks on the marine boundary
layer (MBL). These studies were motivated by visible
cloud effects as they were seen in photos taken at a wind
park at the coast of Denmark (Emeis, 2010; Hasager
et al., 2013; Hasager et al., 2017), indicating fog for-
mation and dispersion due to enhanced mixing and adi-
abatic cooling downwind of wind parks. Associated with

enhanced mixing, Foreman et al. (2017) reported a de-
creased sensible heat flux downwind of a small offshore
wind park during stable conditions in the German Bight
by using eddy-covariance measurements of heat and hu-
midity fluxes at the research platforms FINO1 mast.

Also numerical simulations have indicated a change
in air temperature and humidity in the downwind direc-
tion of offshore wind parks. Vautard et al. (2014) iden-
tified increased temperatures in the area of offshore wind
parks in their simulations, whereby Wang and Prinn
(2011) reported a potential cooling effect in the vicinity
of offshore wind parks due to an increased latent heat
flux. These thermal effects were not investigated by field
measurements, so far. Therefore, in the framework of the
WIPAFF project, their spatial extent was investigated to-
gether with the possibility that larger wind parks may
have an influence on the local climate.

3 Methods used in the WIPAFF project

3.1 Airborne Data

Airborne in situ data were collected with the research
aircraft Dornier DO-128 operated by the Technische
Universitat Braunschweig, Germany. 41 measurement
flights over the German Bight during the WIPAFF
project during 2016 and 2017 delivered (in general at
a sampling frequency of 100 Hz) 3D wind vector, tem-
perature, humidity, and sea surface-temperature. A de-
tailed explanation of the used measurement instruments
and the aircraft can be found in Corsmeier et al. (2001);
Platis et al. (2018); Lampert et al. (2020). The start-
ing points of the flights were Wilhelmshaven, Borkum
or Husum airport, respectively. A typical flight pattern
to capture the wakes is displayed in Figure 1 is the so-
called "meander pattern”, with several flight legs at hub
height (at about 100 m above sea level) positioned down-
stream of the wind-park cluster. The data is freely avail-
able from Bärfuss et al. (2019) and further explained in
Lampert et al. (2020).

Besides the meteorological in situ data, a downward-
looking scanning lidar system measuring the distance
aboard the research aircraft recorded the sea-surface
state for deriving the shape and distribution of the sea
waves, and for characterizing the far-field wakes.

3.2 Satellite information for retrieving surface
properties

Active microwave radar sensors such as Synthetic Aper-
ture Radar (SAR) are powerful instruments for sunlight
and weather independent measurements of the ocean
surface roughness at high spatial resolution. The ca-
pability of SAR to provide information on offshore
windpark wakes has been amply demonstrated (Chris-
tiansen and Hasager, 2005; Li and Lehner, 2013a;
Djath et al., 2018). Far field wake effects of more than
10 km downstream of offshore wind parks have for the
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Figure 1: Distribution of offshore wind parks in the German Bight as of December 2017. Blue regions are parks currently in operation,
red indicate parks still in the approval process. Orange regions are those wind parks that are under construction. The red line within the
close-up indicates the area where typically the vertical profiles where flown to capture the atmospheric stratification in close vecinity to the
wind farm. The map is adapted from data of the German Federal Maritime and Hydrographic Agency (BSH) and adapted from Platis et al.,
2018. The magenta and grey colored crosses show locations of climb flights as indicated in Figure 16.

first time become evident based on the analysis of SAR
images (Christiansen and Hasager, 2005; Lin et al.,
2008; Li and Lehner, 2013b). In the WIPAFF project,
SAR revealed changes of surface properties downwind
of wind parks, expanding the airborne observations to a
scale beyond 100 km.

SAR measures near surface wind fields in an indi-
rect way through the small scale roughness of the sea
surface. The wind influences the sea surface by gener-
ating cm-scale roughness, which is captured by active
microwave sensors due to the Bragg-scattering princi-
ple. Low image intensities thus indicate areas of reduced
wind speed.

Sentinel-1A (launched in 2014) and Sentinel-1B
(launched in 2016) are twin satellites that provide SAR
data in the German Bight on a regular basis. They were
launched into a sun-synchronous orbit and operate at
C-band (5.405 GHz) at vertical receive and transmit po-
larization (VV). Each satellite has an exact repeat cy-
cle of 12 days for the same imaging geometry (i.e., in-
cidence angles and area covered are identical), but can
provide data for a particular spot at one or two day in-
tervals, if different imaging geometries are acceptable.
Thus, the combination of both satellites provide an im-
age every 6 days with identical geometry. The estimation
of wind speeds from SAR requires the radiometric cal-
ibration of the SAR raw data and the inversion of a so
called geophysical model function (GMF) (Hersbach
et al., 2007; Verhoef et al., 2008). Wind direction infor-
mation can be retrieved either from SAR image struc-
tures or alternatively external sources (e.g., atmospheric
models) are used.

Wind speed deficits were estimated from SAR using
a technique proposed in Christiansen and Hasager
(2005) and a new filter approach described in Djath and
Schulz-Stellenfleth (2020). The overall challenge
in this application is the estimation of the undisturbed
background wind speed, which is not available at the
exact location of the wake. The use of wind speeds in
neighbouring areas as a proxy leads to certain errors,
which depend on spectral properties of the background
wind field and which are discussed in more detail in
Djath and Schulz-Stellenfleth (2020).

A spectral analysis of wind fields in the German
Bight was conducted as follows. SAR scenes from both
satellites were collected for the period September 2016
to December 2017. The occurrence of wakes around
the wind park Amrumbank West was analysed (Fig-
ure 1). Only the scenes that included the entire Am-
rumbank West were considered and overall, 177 scenes
were collected. Wave-number spectra were then com-
puted from the SAR derived 10 m-wind speed maps.
Wind field data were classified considering the stabil-
ity conditions based on the thermal stratification from
FINO1 data. Wind fields associated with stable con-
ditions (STA) and unstable conditions (NOSTA) were
considered. A 2D spectral analysis was applied to a
square box of 320×320 grid points (with a grid spac-
ing of 300 m, i.e. spatial resolution) aside the wind tur-
bines (see blue box in Figure 2). Using this area, a wave-
length range between 0.6 km and 100 km is covered. A
2D Fast Fourier Transform (FFT) was applied to the
SAR derived wind fields after the mean was removed.
The resulting 2D wavenumber spectrum was scaled in
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such a way, that integration of the entire spectral do-
main equalled the total variance of the wind field. As
the wavenumber and directional dependency were also
analysed, the spectra were interpolated from the original
2D Cartesian grid to a polar grid. The 1D spectrum was
then computed by integrating over all directions.

Besides the observational data, different (numerical)
model types were used to investigate the far field of
offshore wind parks.

3.3 Mesoscale model and wind-park
parameterizations (WPPs)

All mesoscale numerical simulations were performed
with the Weather Research and Forecasting Model WRF
(version 3.8.1). We used the wind park parameterization
of Fitch et al. (2012) to simulate the wakes of offshore
wind parks in the German Bight. Wind park parame-
terizations (WPPs) allow one to simulate the impact of
several wind parks on the marine boundary layer due
their low computational costs. Nowadays, offshore wind
parks cover an area on the order of 100 km2 and the cor-
responding wakes exceed 50 km downwind (Figure 2).
Consequently, large offshore wind parks affect a large
area, hence, high resolution large-eddy simulations cov-
ering the wake area and the corresponding wind park are
computationally too expensive to estimate the economic
potential loss of planned offshore wind parks or the re-
gional climate impact of wind parks. For such purposes,
WPPs are a suitable tool.

The wind park parameterization of Fitch et al.
(2012) extracts momentum from the mean flow at the
rotor area and adds TKE at rotor height. In contrast,
others (e.g. Jacobson and Archer, 2012; e.g. Volker
et al., 2015) do not add any TKE as they assume that
the TKE develops due the resolved shear. However,
both approaches simulate wakes of offshore wind parks
with a length exceeding 50 km during neutral conditions
(Volker et al., 2015).

Evaluation studies testing the performance of WPPs
for offshore wind parks during stable conditions are rare.
Hasager et al. (2015) compared SAR retrieved wind
speed to mesoscale simulations. Volker et al. (2015)
tested their WPP and that of Fitch et al. (2012) with real
case data using idealized simulations. However, all these
evaluation studies were either based on remote sensing
data allowing only an evaluation of the wind speed 10 m
above mean sea level (msl) or on idealized simulations
omitting moisture effects and assuming a stationary in-
flow. Therefore, studies investigating the performance of
WPPs for real case simulations are necessary.

3.4 Analytical model

Analytical wind park models for the assessment of
wakes can be constructed in two ways. These models are
either bottom-up models which are based on overlays of
several single-turbine wakes (the description of which

dates back to Jensen, 1983) or they are top-down mod-
els which consider wind parks as a whole, e.g., as an ad-
ditional surface roughness, as an additional momentum
sink or as a gravity wave generator in association with
a temperature inversion aloft at the top of the bound-
ary layer (for the latter idea see Smith, 2010), which
modifies the mean flow above wind parks (Newman,
1977; Bossanyi et al., 1980; Frandsen, 1992). Such
models have analytical solutions which make them at-
tractive, although they necessarily contain considerable
simplifications. Nevertheless, they can be used for first-
order approximations in wind park design. Furthermore,
a significant advantage of top-down models that they im-
plicitly include the ‘deep array’ effects (Barthelmie
and Jensen, 2010). Wind turbines in a large array in-
fluence the flow in the atmosphere above the wind farm
(Chamorro and Porte-Agel, 2011). It has been pro-
posed that this prevents the entrainment of momentum
from the air above the wind farm, restricting the wake
recovery (Nygaard, 2014).

The analytical wind park model of Emeis (2010) is
an extension of earlier ideas documented in Frandsen
(1992) and Emeis and Frandsen (1993). An updated
version which additionally includes the turbulence gen-
erated by the turbines in the wind park itself is docu-
mented with all equations in Chapter 6 of Emeis (2018).
The basic idea of this model is that the overall mo-
mentum consumption of the turbines in very large wind
parks, which is proportional to the drag coefficient of
the turbines and the wind speed at hub height, can only
be compensated for by a turbulent momentum flux from
above. This leads to an analytical equation for the re-
duced horizontal wind speed at hub height in the inte-
rior of large wind parks. In the wake behind such large
wind parks the wind speed at hub height can only re-
cover again due to a turbulent momentum flux from
above. This leads to an exponential function for the wind
speed recovery at hub height in the wake. The length
of the wake is arbitrarily defined as the distance behind
the wind park where the wind speed has recovered to
more than 95 % of the undisturbed value ahead of the
wind park. We note that the decay coefficient used here
is not the wake decay coefficient (WDC) used in the
quadratic decay function of Jensen (1983). In this an-
alytical model the wind speed reduction at hub height
within a large wind park is given as a function of the
areal density of turbines in the park, (sea) surface rough-
ness, turbine-induced turbulence and the thermal stabil-
ity of the atmospheric boundary layer. The wake length
in the analytical model depends on the reduced wind
speed right after the wind park and the latter three pa-
rameters mentioned before. The park layout, i.e., the
spatial arrangement of turbines within a wind park, is
not covered by this analytical model.

3.5 Engineering models

Engineering models are widely used in the wind energy
industry due to their low computational costs and ease
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of use to account for wind park wakes. Direct wakes
of each individual turbine are simulated with the ‘mod-
ified PARK’ model (Katic et al., 1987). Alternatively,
the ‘Eddy Viscosity’ model Ainslie (1988) could be
used. Experience shows that the differences between the
two models are particularly relevant in the first kilome-
ters behind the wake-generating turbine. Since in the
WIPAFF context, however, the effects beyond 10 km on
the lee side of the wind park are particularly relevant,
the ‘modified PARK’ model is used here due to the sig-
nificantly shorter computing time.

In large (offshore) wind parks, the turbines cannot be
regarded as independent of the free wind field. Rather,
they extract momentum from the wind and therefore act
like an area with increased roughness. This results in the
formation of an internal boundary layer (IBL) with re-
duced wind speed behind each turbine. The exact shape
of the IBL and the resulting wind speed reduction de-
pends on the orientation of the wind park layout relative
to the wind direction (DNV-GL, 2013a).

Both (the ‘modified PARK’ model combined with
an IBL) together allow a reasonable simulation of the
wake in offshore wind parks and wind park clusters
and are often used in this combination for the deter-
mination of wind park yields. Importantly, as the indi-
vidual turbine wake and IBL models have been devel-
oped assuming neutral conditions, stratification needs
to be explicitly accounted for by tuning the parameters
of these models to match the observations (Peña and
Rathmann, 2014) and to get an accurate estimation of
energy production.

4 Results

In the following the four hypotheses described in Sec-
tion 2 are tested.

4.1 On hypothesis 1: Wake Appearance

4.1.1 Appearance of wakes from SAR and
airborne data

28 out of the total 41 flights during the WIPAFF project
included a flight strategy which allowed for the deter-
mination of wakes behind wind parks. For 12 out of the
28 flights, the wake length, defined as the distance to
95 % recovery of the wind field, exceeded the length of
the flight meander pattern and for two flights the wake
length was observed to be shorter than the downwind
distance of the first measured leg. The observed wakes
within the WIPAFF campaigns range from nearly 0 km
in unstable atmospheric conditions to over 65 km in at-
mospheric stable conditions (see for further results and
discussion Section 4.1.2). The flow inside the wakes was
reduced up to 43 % compared to the undisturbed flow,
two examples are shown in Figure 4 and 10a).

In addition to the airborne observations, wakes
were identified by the analysed surface roughness and
backscatter signal (Normalized Radar Cross Section –

Figure 2: NRCS from Sentinel-1A acquired on 27 May 2019 at
05:49 UTC (Copernicus Sentinel data [2019]). Dark streaks in East-
West direction behind the wind parks represent atmospheric wakes.
Strong atmospheric related NRCS modulation are also found in
North-South direction. The blue box was used for the estimation
of 2D wavenumber wind spectra. The red arrow indicates the wind
direction.

NRCS) from SAR Sentinal – 1A and 1B observations,
e.g. Figure 2. The images exhibit darker streaks down-
wind of wind parks and brighter features at the edges of
the wakes, which indicate that surface roughness is re-
duced downstream of wind parks, and increased along
the edges of the wind parks. An example of recent
Sentinel-1A SAR image on 27 May 2019 in Figure 2
shows the wakes through the east-west oriented dark
streaks behind the wind parks and are in line with the
wind direction coming from West. The wind direction
is given by the German weather service (DWD) that
provides hourly weather data. The wake behind individ-
ual wind parks are longer than 30 km. Statistical analy-
sis from SAR data and atmospheric stability by Djath
et al., 2018 showed wakes longer than 50 km and also
revealed that the wakes are longer for stable conditions.
Overall, from the total 177 collected scenes between
2016 and 2017, 38 % of them show wakes downstream
of offshore wind parks. The case with missing wakes on
SAR could be related to either strong atmospheric insta-
bility or the fact that the wind farms are not in operation.

4.1.2 Longer wakes during stable stratification

Experimental observations by SAR and aircraft indi-
cated that the wake length depends on the stability of
the surrounding atmospheric flow. Therefore, a detailed
correlation analysis was performed in order to quantify
the effect of different stability definitions on the wake
length.

A layer is considered as stable, when vertical mo-
tion is suppressed, and as unstable or convective, when
vertical motion is enhanced (Stull, 2012). By theory
and as outlined in Emeis et al. (2016), it is typical over
the ocean for the northern hemisphere in the temper-
ate west-wind belts that warm sector winds most fre-
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quently come from the south-west and thus are followed
by rather stable conditions, whereas cold-sector winds
come from the north-west and predominantly bring con-
vective conditions. For the German Bight, long term
studies conducted during recent years support these as-
sumptions (Westerhellweg et al., 2010; Sathe, 2010;
Muñoz-Esparza et al., 2012; Emeis et al., 2016).

A common stability parameter is the static stability or
lapse rate γ, which takes solely buoyancy into account.
The lapse rate is defined by the derivation of the virtual
potential temperature θv with respect to the vertical co-
ordinate z, and can be approximated by the temperature
difference Δθv between two levels separated by height
difference Δz:

γ =
dθv

dz
≈ Δθv

Δz
. (4.1)

Thus, γ is negative during convective conditions and
positive for stable cases.

Common parameters that express dynamic stability,
considering both buoyancy and shear, are the Obukhov
length and the bulk Richardson number (Stull, 2012;
Muñoz-Esparza et al., 2012). Moreover, there are mea-
sures of the magnitude of turbulence, not considering
any thermal stratification at all. Most common in ABL
science is the turbulence kinetic energy (TKE) per vol-
ume and unit mass

k =
1
2
·
(
u′2 + v′2 + w′2

)
(4.2)

taking the turbulent part of the wind speed components
into account.

We used SAR and flight data in the WIPAFF project
to investigate the correlation between stability and wake
length.

In a first step SAR scenes taken over the offshore
windpark Alpha Ventus were analysed and wake lengths
were estimated using the technique described in Chris-
tiansen and Hasager (2005). This technique consists
of estimating the velocity deficit from two parallel tran-
sects defined such that one transect encloses the wake
area and the second transect is defined outside the wake,
which is characterised as freestream conditions. The
length at which the wind speed inside the wake has re-
covered to the freestream characterizes the maximum
length of the wake. The scenes were collocated with
estimates of the vertical gradient of potential temper-
ature obtained from the nearby FINO-1 platform. The
vertical gradient is based on the measurement of the
hourly sea surface temperature at FINO1 and the air
temperature at 50 m height. The resulting scatter plot is
shown in Figure 3. One has to emphasize that this analy-
sis only includes measurements during the early period
(2011–2015), where the Alpha Ventus windpark was not
affected by neighbouring wind farms, like it is today.
One can clearly see a relationship between increasing
atmospheric stabilities and growing lengths of the off-
shore wind farm wake. More details are given in Djath
et al. (2018).

Figure 3: Scatterplot of SAR derived wake lengths versus atmo-
spheric lapse rate γ = Δθv

Δz derived from FINO-1 data (adapted from
Djath et al. (2018)).

The second data source for the determination of the
stability were the airborne measurements. We used the
vertical profiles obtained during the WIPAFF measure-
ment flights close to the wind parks as marked in Fig-
ure 1 for the stability estimation. Further, to examine
the relationship between wake expansion and stability,
the wake length obtained from flight data (e.g Figure 4)
was compared to the stability parameters such as L, RiB,
and γ. However, a general statement is difficult. Most
promising results were achieved using γ (Figure 5a), us-
ing a height interval Δz from the uppermost position of
the wind turbine blade tip (at 150 m agl for the Amrum-
bank West wind park AW, for instance) to the lowest
position (at 30 m agl for AW). Thus, the height interval
covers the entire rotor area, as this was assumed to be
the most representative height interval with respect to
the wake origin.

Looking at the distinct wind park clusters (Figure 5),
the correlation between wake length and stronger sta-
bility, as observed for the wind parks GO (Godewind)
and AW, can be approximated by two different expo-
nential functions. This is an indication that there are
more parameters that govern the wake length, in ad-
dition to stability – possibly also the wind-park archi-
tecture as considered in the analytical model. More-
over, strong stability coincides with the absence of short
wakes. In addition, there is a correlation between higher
wind speed deficit with more stable atmospheric condi-
tions (not shown), while small wind deficits occur dur-
ing more convective conditions.

Using the airborne data set of the WIPAFF project,
a distinct correlation between the wake length and the
other stability parameters L and RiB (not shown) was
not apparent. Summing up, the correlation analysis for
wake length and stability exhibits large uncertainty and
data scatter. A major problem is the exact determination
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Figure 4: Contour plot of the interpolated wind field, measured
during Flight 31 on 08 August, 2017, including the indication of the
undisturbed wind field (grey dashed lines) and the wake boundaries
(grey solid lines). The black line refers to the flight track (so-called
“meander pattern”), black dots indicate the wind turbines of the wind
park cluster Amrumbank West, Nordsee Ost and Meerwind Süd/Ost.
The mean wind direction is from the east. The top of the map is
oriented towards the west. Adapted from Platis et al. (in review).

of stability. A variation of e.g. the height interval for
the lapse rate γ or the occurrence of an inversion below
the hub height (cf. Section 4.1.3) changes the results
significantly. A more detailed analysis will be shown in
a following study.

4.1.3 Vertical Structure of wakes

The vertical structure of the atmospheric boundary layer
approaching the wind park has a decisive impact on the
wake forming. Especially the occurrence of temperature
inversions is important. The aircraft data documented
several cases where the inversion was either below, at the
rotor area of the turbines, or above (Siedersleben et al.,
2018b). In each of these cases a different behaviour of
the wake could be observed. The main challenge with
inversions near to or at hub height is that the thermal
stratification of the atmospheric boundary layer and the
respective level of turbulence are different below and
above the inversion. This makes it very difficult to assign
a specific thermal stratification to an observed wake de-
velopment. An inversion below the rotor area decouples
the wake development from the state of the sea surface.
An inversion above the rotor area prevents the wake
from spreading into higher parts of the boundary layer.
Inversions are quite common above the North Sea, es-
pecially if the flow comes from land upstream. Internal
boundaries form when the flow transits across the shore-
line from land to water (see, e.g., Smedman et al., 1997).

Figure 5: Scatter plots of the wake length versus lapse rate γ =
Δθv
Δz obtained from the flight measurement. The according wind

park is colour coded. Wakes were measured downstream of the
wind parks Amrumbank West (AW), Nordsee Ost (NO), Meerwind
Süd/Ost (MSO), Godewind (GO). Cluster implies that only one sin-
gle wake was identified downstream of the wind park cluster consist-
ing of the wind parks AW, NO and MSO. The regression lines (Reg.)
are color coded with respect to the color of the respective wind farm
cluster. The regression line is plotted is blue for the wind farm GO
green and for the AW. In the case the wake length exceeds the cover-
age of the flown meander pattern (cf. Figure 4), the non-filled marker
is used for the minimum measured wake length.

Given the distance of the North Sea wind parks from the
coast the top of this internal boundary layer is very of-
ten found in the height range of the rotor area (Lampert
et al., 2020). There are not only newly-formed inversions
at the top of internal boundary layers but also inver-
sions advected from the land upstream where they had
formed due to radiative cooling in the nocturnal bound-
ary layer. If these cold near-surface layers are advected
over warmer sea water, the layer underneath the inver-
sion can be turned into a neutral or even slightly un-
stable layer while the stratification above the inversion
remains more or less unchanged. The propagation con-
ditions for wind park wakes may be further complicated
by jet-like wind maxima at the top or just above the in-
ternal boundary layer (see, e.g. Smedman et al., 1996).
The variety of different vertical profiles of potential tem-
perature and wind speed from 26 aircraft operations in
WIPAFF is documented in Siedersleben et al. (2018b);
Lampert et al. (2020) while a case study from one flight
is presented in Siedersleben et al. (2018a). It is not
only the propagation of the wake which is determined
by the vertical structure of the air approaching the wind
parks but the vertical structure also determines whether
the air at hub height behind the wind park is warmer
or cooler than before. Figure 6 shows a schematic of
this dependence. An inversion in the upper part or just
above the rotor area associated with turbulent vertical
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Figure 6: Schematic of stability-dependent temperature change at hub height in wind park wakes (left: warming, right: cooling). Bold
vertical line: rotor disk, cone-like structure: wake, black vertical profile: initial temperature profile, red and blue curves: temperature profiles
modified by the wake. (From Siedersleben et al., 2018b)

mixing within the wake results in a warming of the air
at that height. In contrast, an inversion in the lower part
or just below the rotor area results in a cooling of the
air at that height. In a constantly stable boundary layer
without inversions turbulent mixing within the wake will
lead to warming below hub height and cooling above
hub height. This warming below hub height is similar to
satellite observations of nocturnal surface warming be-
hind onshore wind turbines (see, e.g. Xia et al., 2017 and
references therein). Nevertheless, the observed tempera-
ture changes are merely a vertical re-distribution of heat
by the additional turbulence in the wake.

4.1.4 Wakes covered by mesoscale and industrial
models

The numerous observations of wakes allowed the evalu-
ation of wake simulations. Within the WIPAFF project,
two kind of simulations were evaluated. First of all,
mesoscale simulations using WRF and the wind park
parameterization of Fitch et al. (2012) were compared
against the airborne observations. Secondly, we tested
the ability of commonly used industrial models to cap-
ture wakes of large offshore wind parks during stable
conditions. In this overview paper we focus on obser-
vations covering simulations of a wake event observed
on 10 September 2016 during atmospheric stable condi-
tions and moderate wind speed of around 8.5 m s−1.

The WRF simulations captured the horizontal dimen-
sions of the wake but overestimated the vertical extent
(Siedersleben et al., 2018a). The wake observed on
10 September 2016 extended more than 45 km down-
wind of the wind park Amrumbank West, agreeing with
the simulations Platis et al., 2018. However, the vertical
extent of the wake was overestimated in the simulations.
For example, a wind deficit in the order of 5 %–10 %
was observed 5 km downwind of the last turbines of
Amrumbank West at 200 m above MSL. In contrast, a
wind deficit on the order of 20 % and 15 % was simu-
lated (not shown).

The simulated wind speed upwind of the wind parks
was 1.5 m s−1–2 m s−1 too low Siedersleben et al.,
2018a. Consequently, the wind speed within the wake of

Figure 7: Wind speed reduction relative to free wind speed (10 m/s)
in the wake of the wind park cluster Amrumbank/North Sea Ost/
Meerwind on 10 September 2016. Shown are the flight data (black
dots with error bars), the WRF simulation (blue dashed line), as well
as two wake simulated with WindFarmer: default settings (orange
solid line) and adjusted settings (blue solid line) the diamonds cor-
respond to the original measurements used to calibrate the default
WindFarmer set-up DNV-GL, 2013b.

the simulations was underestimated as well (Figure 7).
Aircraft vertical profiles of the atmosphere obtained by
climb flights revealed that the simulated stratification of
the atmosphere was too unstable at the transition area
from land to open ocean. Therefore, we suggest that the
overestimated vertical extent of the simulated wake is
rooted in a wrongly simulated stratification of the atmo-
sphere.

To compare the WRF simulation and the industrial
model (WindFarmer Version 5.2.11 was used within the
project) with the flight measurements, a methodology
similar to that described in Cañadillas et al. (2020)
was used to extract the minimum value of the wind
speed along the wake centerline. Layouts and turbine
types were chosen identical to those used in the WRF
simulation. In WindFarmer, the model options “modi-
fied PARK” and “IBL” (internal boundary layer) were
selected. This combination is based on the best repre-
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sentation of the park effects in offshore wind parks and
clusters to determine park yields. While the wind speed
deficit in the modified PARK and Eddy Viscosity mod-
els decreases with increasing turbine spacing, this is not
the case in the IBL implementation, which is of course
unphysical. The recovery of the wind velocity deficit
from the IBL model was therefore realized by an ad-
ditional function (so-called “wake recovery function”).
Downstream of the wind farm, the wind speed recov-
ery is modelled explicitly as a power function DNV-GL,
2013a

UR(x) = 1 −
(
1 − U

U∞

)
0.5

(
x−xstart
x50 %

)
, (4.3)

where xstart is the downstream distance specifying the
start of the power function, and x50 % is the location
where the wind speed recovery UR has recovered to half
its initial value.

The standard parameterization of the wake recovery
function starts at xstart = 60D (D is the rotor diame-
ter; here D = 120 m) behind the turbine and after an-
other x50 % = 40D has reduced half of the wind speed
deficit. These values were derived by WindFarmer from
mast measurements at the lee side of the Danish wind
parks “Horns Rev” and “Nysted”. With this parameter-
ization the wake curve (orange solid line) is obtained
by DNV-GL, 2013b, which is shown in Figure 7. Ap-
parently the wind speed recovers much faster with this
parameterization than measured by the research aircraft
on 10 September 2016.

A more detailed analysis shows that the measuring
masts at “Horns Rev” and “Nysted” are each installed
east of the parks, so that the park wake there can only be
determined with westerly winds. It is known from sta-
bility studies conducted at the offshore mast FINO1 that
neutral to stable stability conditions dominate in west-
erly winds (Emeis et al., 2016). Probably the parameters
for the wake recovery function in WindFarmer were de-
termined on the basis of neutral to unstable stratifica-
tions. By contrast, neutral to slightly stable conditions
prevailed on 10 September 2016.

It is known from the observations in WIPAFF
(Cañadillas et al., 2020) and from the analytical wake
model of Section 4.1.5, that considerably larger wake
lengths result with stable atmospheric stratification com-
pared to neutral and unstable stratification. This sup-
ports the assumption that the wake length differences
between the measurements and the standard parameteri-
zation in WindFarmer are mainly due to an incorrect ac-
counting of stability effects in the default set-up of Wind
Farmer. However, the measurements can be well repro-
duced by a different parameterization (start of wake re-
covery at 200D, 50 % recovery after another 200D) for
distances beyond 22 km from the wind park cluster (Fig-
ure 7). For further discussions, please refer to Cañadil-
las et al. (2020).

4.1.5 Wake Decay Formula

Besides the numerical models, a simple analytical model
approach to determine the wake length and wind speed
recovery was validated based on the flight data collected
during WIPAFF Platis et al., in review. The analysis of
several different case studies (Figure 8) suggests that the
recovery in terms of the wind speed ratio (wake wind
speed to undisturbed wind speed at hub height) can be
characterized by an exponential function as expected
from the analytical model described in Emeis (2010);
Emeis (2018).

The advantage of the model is that the spatial behav-
ior of the reduced wind speed ur(x) in the wake at the
downstream distance x is described in a single equation.
It solely depends on the initial wind speed deficit ur0
directly downstream of the wind farm and the wake re-
covery rate α.

ur(x) = uf + (ur0 − uf ) exp(−αx) (4.4)

where uf is the undisturbed (free) wind speed (outside
the wake) at hub height. The wake recovery rate α is

α =
Km

(Δz)2
, (4.5)

where Km is the momentum exchange coefficient. The
height z = h + Δz describes the height where the undis-
turbed wind speed is reached above the wind farm.

By testing the analytical model against the air-
borne data set, we showed in Platis et al. (in review);
Cañadillas et al. (2020) that the analytical model per-
forms very well as a first-order approximation. This
strengthens the hypothesis that the vertical downward
momentum flux is the dominating factor for the wake
recovery. Best agreement of the exponential wake re-
covery curve with the observations was achieved for the
case study for Flight 31 (Figure 4). The wind data was
extracted based on the method described in Platis et al.
(in review) and plotted in Figure 8, showing the relative
wind speeds between the wind speed in the wake and
the undisturbed speed behind several wind farms dur-
ing which stable and homogeneous conditions prevailed.
Further results are discussed in detail in Platis et al. (in
review); Cañadillas et al. (2020).

A drawback of the analytical model is the determi-
nation of the separation height between the hub height
and the undisturbed flow above the wind park which
must be specified in order to determine the decay co-
efficient in the exponential wake recovery relation as al-
ready noted by Peña and Rathmann (2014). It is also
expected, that Δz might not be constant along the wake.
Further, the impact of the park layout on the intensity
and length of the wake is only covered by the analyti-
cal model through the initial deficit. Apart from that, the
decay coefficient in the analytical model does not de-
pend on the turbine-induced turbulence left over from
the wind park, but only on the upstream conditions. As
expected by Porté-Agel et al. (2020) a modification of
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Figure 8: Wind speed ratio Rr = ur
u f

between the wind speed in-
side (ur) and outside the wake (uun) of flight 31 on August 8, 2017.
Dots indicate the measured ratios Rr = ur

uun
and the line the exponen-

tial fit according to the analytical model. Blue indicates the wind
speed analysis in the wake downstream of the wind farm Meer-
wind Süd/Ost (MSO), red Nordsee Ost (NO) and yellow Amrum-
bank West (AW). Adapted from Platis et al. (in review)

the atmospheric stability (e.g u∗) by forming a farm-
induced internal boundary layer (IBL) is likely and has
to be considered in further editions of this model.

4.1.6 Wakes change the sea surface

Wakes downstream wind parks are visually detectable
on SAR images and usually characterized by dark
streaks in line with wind direction (Figure 2). However,
some images show brighter areas (increase of NRCS
and thus wind speed) within the first 10 km downstream
the wind parks. An example of an increase of NRCS
downstream of the wind park is shown on Figure 9
acquired on 18 June, 2017 at 05:48 UTC during sta-
ble stratification (air temperature is 16 °C, while SST
is 15.4 °C). This leads to an inferred increase of wind
speed in Figure 9b, which is an unusual behavior. The
mechanism of this behaviour is unknown. Nevertheless,
a theoretical model was proposed in Djath et al. (2018),
which tried to explain this atypical observation by an in-
creased downward momentum flux associated with in-
creased turbulence generated by the wind park. Indeed,
the turbulence, which is generated mechanically by the
wind turbines, leads to an increase of friction velocity
and radar cross section. The turbulence slowly dissipates
downstream and after some distance the downward mo-
mentum flux is not effective any more. Mechanisms of
this kind can be expected to be most effective in at-
mospheric stable stratification with strong vertical wind
speed gradients. The SAR observations are confirmed
by airborne laser scanner observations: Within the wake,

a)

b)

Figure 9: Normalised radar cross section (a) associated with sea
surface roughness as derived from a Sentinel-1B image acquired on
18 June 2017 at 05:48 UTC (Copernicus Sentinel data [2007]) and
derived near surface wind speed (b) showing an increase of NRCS
and wind speed within the first 10 km downstream Sandbank (wind
park on the left) and DanTysk (wind park on the right) wind parks.
The red arrow indicates the wind direction.

the reflectance is significantly enhanced (Figure 10c).
An explanation is the flatter surface, which reflects back
more energy of individual laser pulses, as they are only
little scattered. Further, the number of returned pulses
is reduced. A smoother surface reflects the laser pulses
more directed, reducing the probability of receiving a
reflected laser pulse.

4.2 On hypothesis 2: Wakes and increased
turbulence

4.2.1 Turbulence in the wake

The reduction of the wind speed by wind turbines leads
to an area of low wind speed which can generate large
horizontal shear at the boundary between the undis-
turbed wind field and the wake. For flights perpendic-
ular to the wake at hub height, the measurements show
strongly enhanced turbulence parameters at the edges of
the wakes. For pronounced far-reaching wakes, the tur-
bulent kinetic energy (TKE) at the edges od the wake is
still at the same level several 10 km behind the wind park
(Figure 10b). During the airborne measurements, the en-
hanced aircraft vibrations during entering and leaving
the wake were noticeable to the crew. Turbulence was
found to be particularly enhanced for high wind speed
gradients between the wake and the undisturbed flow
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Figure 10: Measurements of wind speed (a), turbulent kinetic energy (b) and surface reflectance (c) downwind of the wind parks
Amrumbank West, Nordsee Ost and Meerwind Süd/Ost. The measurement flight took place on 10 September 2016. Adapted from Platis
et al. (2018).

(Figure 10a, b), and for denser wind park geometries.
In contrast, within the wake, turbulent kinetic energy
is reduced even compared to the undisturbed flow (Fig-
ure 10b).

As any change in wind field at the turbine level
affects also the sea surface, SAR is capable of detecting
the horizontal shear on the edge of the wake through
the roughness as well. Figure 9a shows an example
of the roughness by the indication of the Normalized
Radar Cross Section (NRCS), obtained by Sentinel-1A
on June 18, 2017 at 05:48 UTC during stable conditions
(air temperature at 50 m was 16 °C and 15.4 °C for the
sea surface temperature). Strong increases of NRCS and
friction velocity can be seen at the boundaries of wakes
downstream wind parks at the northern edge of the two
wind parks.

Similarly, the derived wind speed at 10 m alti-
tude (Figure 9b) using the geophysical model function
CMOD5N GMF (Hersbach et al., 2007; Verhoef et al.,
2008) tuned for C-band displays an increase of ampli-
tude at the edge. These features can be explained by
the considerable horizontal shear that exists between the
wind field inside the wake and outside the wake. This
shear leads to an increase in turbulence, which is also
captured in numerical model simulations (Abkar and
Porté-Agel, 2015a). The higher turbulence levels at
the boundaries of wakes have also been confirmed by
airborne lidar surface roughness measurements (Platis
et al., 2018), see Figure 10. This turbulence then causes
an increase in the downward momentum flux, which can

explain a growth of the friction velocity and hence the
radar cross section. This effect can be expected to be
particularly effective in stable situations with strong ver-
tical wind speed gradients. These are actually the con-
ditions where wakes are most visible on SAR images.
A semi-empirical model to describe the effect of in-
creased downward momentum flux associated with tur-
bulence on surface roughness measured by SAR is given
in Djath et al. (2018).

4.2.2 TKE above the wind park

The mixing above offshore wind parks determines the
wake recovery as pointed out in Emeis (2010). Conse-
quently, mesoscale WPPs should represent the enhanced
mixing above offshore wind parks to capture the cor-
rect wake extent. In Siedersleben et al. (2020) we pre-
sented three aircraft case studies, where the TKE above
the wind parks Godewind and neighbouring wind parks
Nordsee Ost and Meerwind Süd/Ost was measured and
compared to mesoscale simulations.

The most important ingredient for capturing the TKE
above offshore wind parks with WPPs are correctly
simulated upwind conditions. The WPP of Fitch et al.
(2012) captured the enhanced TKE above the wind parks
Godewind 1, 2 during onshore winds. In contrast, the
model overstimated the TKE above the wind parks dur-
ing offshore winds. By the use of vertical profiles taken
by the aircraft close to the coast, we showed that the
boundary layer parameterization (MYNN 2.5, Naka-
nishi and Niino, 2004) was not able to represent the
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transition from land to open ocean close to the coast in
case of offshore winds. Hence, we suggest the devia-
tion of the simulated and observed TKE above offshore
wind parks is largely rooted in the deviation of the sim-
ulated and observed upwind conditions. These results
agree with the findings in Siedersleben et al. (2018a)
(Section 4.1.4) where the overestimated extent of the
wake was related to deviations between the simulated
and observed stratification of the atmosphere.

We recommend using the TKE source of the WPP of
Fitch et al. (2012) for offshore wind park simulations
during stable conditions, especially for simulations hav-
ing a horizontal grid coarser or equal to 5 km. For ex-
ample, simulations with a horizontal grid size of 16 km
did not capture the enhanced mixing over the wind parks
although the WPP of Fitch et al. (2012) adds additonal
TKE to the model to account for the not resolved shear
within the simulations.

The WPP of Fitch et al. (2012) adds too much TKE
at the upwind side of a wind park. During two case
studies it was observed that TKE above the wind parks
increased with the path of the air through the wind park
resulting in a higher TKE at the downwind side of a
wind park than on the upwind side. In contrast, the WPP
simulated the highest TKE at the upwind side of the
wind park associated with the highest wind speeds and
wind park density at the front row turbines. On the other
hand, the wind speed deficit is underestimated with a
disabled TKE source. Therefore, we suggest to use the
TKE source for stable conditions (Siedersleben et al.,
2020) although the TKE at the upwind side of the wind
park might be overestimated.

4.2.3 Wave-number spectrum vs. stability

Wave-number spectra were computed from the 10 m-
wind speed derived from the SAR dataset taking into ac-
count the stability conditions based on the thermal strat-
ification from the FINO1 data. The spectral analysis is
performed for the period September 2016 to May 2017
and considered stable and unstable stratification cases.
The results for all stability cases are shown in Figure 11.
Each spectrum represents the average over the consid-
ered period. Although their spectral forms appear to be
different at high wavenumber, the shapes look quite sim-
ilar in general at low wavenumber. The slope is quite
close to the k−5/3 power law (Pond et al., 1966; Kaimal
et al., 1972; Nicholls and Readings, 1981; Chin et al.,
1998; Wikle et al., 1999; Cho et al., 1999b; Cho et al.,
1999a; Högström et al., 2002; Tulloch and Smith,
2009; Xu et al., 2011).

The change in stability does not affect the spectral
slope in general, but rather modifies the amplitude of
spectral power. The spectral power for unstable condi-
tions (green curve in Figure 11) is indeed higher than the
spectral power of stable conditions (black in Figure 11).
This analysis is in agreement with the previous works
(Kaimal et al., 1972; Nicholls and Readings, 1981;
Djath and Schulz-Stellenfleth, 2020).

Figure 11: Wavenumber spectra computed from near-surface wind
fields derived from Copernicus Sentinel-1 data. “STA” stands for
stable cases (black curve) and “NOSTA” for unstable cases (green
curve).

The high spectral power associated with the unstable
stratification confirms that the unstable flows are more
turbulent than stable flows. Within the wind park wake
context, the generation of turbulence increases mixing
and therefore dampens the wake, which lead to having
no or short wakes during unstable conditions, while long
wakes are pronounced for stable stratification (Chris-
tiansen and Hasager, 2005; Djath et al., 2018).

4.2.4 Anisotropy spectra aligned wind direction

2D wind spectra were also computed from the mean
normalised wind speed (Figure 12). As the stable atmo-
spheric boundary layers are favorable conditions, where
wakes are most pronounced, the spectrum is estimated
by averaging over the spectra of SAR derived wind fields
for stable cases as derived from FINO1. The spectrum
is oriented with the wind direction along the horizon-
tal axis. It is interesting to note, that the isolines are
bunched in the wind direction, at least for wave lengths
shorter than about 10 km. This is equivalent to the occur-
rence of wind field structures, which are aligned in wind
direction. For instance, the atmospheric boundary rolls
are aligned with wind direction and are used to estimate
the wind direction on SAR images (Koch, 2004).

4.3 On hypothesis 3: Impact on other wind
parks downstream

The impact of far wakes on the environment and on
other wind parks depends on the wake length and on the
shape of the wind speed recovery within the wakes. In
Cañadillas et al. (2020) data from 11 flight measure-
ments collected within the wakes at several downstream
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Figure 12: Mean 2D wind modulation spectrum estimated from
SAR derived normalised wind field spectra.

distances of two offshore wind park clusters were ana-
lyzed.

A method was developed to extract the wake recov-
ery function of each measurement flight and a median
value was computed for each stable and neutral/unstable
atmospheric conditions group. It allowed to calibrate
the engineering model WindFarmer used in WIPAFF
project. For further details please refer to Cañadillas
et al. (2020).

The findings from this study support the results in
Section 4.1.1–4.1.2 that stable stratifications is associ-
ated with significantly longer wakes characterized by a
slower wind speed recovery compared to unstable con-
ditions. The results show that the average wake length
under stable conditions exceeds 50 km, while under neu-
tral/unstable conditions, the wake length typically ex-
tends to 15 km similar to the results presented in Sec-
tion 4.1.2. The default settings of the engineering model
WindFarmer have to be modified to account for a slower
wind speed recovery in stable stratification, as the ob-
served length of wakes under these conditions highly
exceeds the wake length arising from the default settings
(see Figure 7).

The examination of the effect of the modified recov-
ery on the park efficiency of an isolated downstream
wind farm cluster reveals that, for distances > 30 km, the
calculated reduction of the wind park efficiency does not
exceed 0.5 %. This is considered to be a lower limit of
the actual economic effect, as distances between most
wind park clusters in the German exclusive economic
zone (EEZ) and other offshore regions are < 30 km.
However, modelling wakes at distances < 30 km down-
stream requires modification of not only the stability be-
haviour of the wind speed recovery, but also of the direct
wake and IBL models.

4.3.1 Influence of park architecture

The effect of wind park architecture was estimated when
distinct wakes were visible downstream of single wind
parks within the same atmospheric conditions. As pre-
sented in Platis et al., in review this was the case for the
Flights 25, 30 and 31 within the WIPAFF project. Here,
a distinct example is shown in Figure 4 for the case study
Flight 31. The wakes of the two adjacent parks Meer-
wind Süd/Ost (MSO) and Nordsee Ost (NO) are simi-
lar in their length (15 to 21 km). However, they differ
in the initial wind speed deficit, i.e. 29 % for MSO and
19 % for NO. The wake of the very dense wind park AW
is significantly longer at 38 km with initial wind deficit
of 28 %. Other case studies showed similar observations
in Platis et al., in review. As a consequence, it can be
concluded that a clear influence of the park layout is evi-
dent and longer wakes appeared with a denser alignment
of wind turbines in contrast to a low-density wind park.
Therefore, to minimize the impact of downstream in-
stallations a less narrow alignment of the wind turbines
could be considered in future offshore wind park plan-
ning.

4.4 On hypothesis 4: Impact of wind-park
wakes on local climate and surface fluxes

Given the warming and cooling in the rotor layer associ-
ated with the enhanced vertical mixing at the rotor area
(Section 4.1.3) the question arises whether wind parks
can alter local climate.

A change in local climate would be equal to a change
in the energy budget of the atmosphere. According to
Trenberth et al. (2001) and Porter et al. (2011) a
change in the energy budget of the atmosphere is associ-
ated with a change in radiation budget and/or in the tur-
bulent surface fluxes. Hence, it is relevant whether the
temperature and moisture changes at hub height as in-
vestigated in Siedersleben et al. (2018b) are associated
with temperature and moisture changes at the surface
that in turn could enhance the turbulent fluxes at the sur-
face resulting in a change of the energy budget of the at-
mosphere. Temperature and moisture changes were well
observed on 10 September 2016, hence, we investigated
the potential impact of all planned and existing offshore
wind parks in the German Bight on the turbulent sur-
face fluxes (i.e. sensible and latent heat flux) by the use
of WRF simulations. The locations of the planned wind
parks follow plans of the Bundesamts für Seeschifffahrt
und Hydrographie (BSH) published in 2015 (Figure 13).
Although such a numerical simulation can not give a an-
swer on whether offshore wind farms have an impact
on the local climate or not, we can still determine the
maximal impact of offshore wind farms on the bound-
ary layer by simulating a day, that was characterised by
large wakes in the German Bight. Based on these re-
sults further studies should be conducted, investigating
the impact of offshore wind farms on the local climate.
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Figure 13: The impact of all potentially planned offshore wind parks at the North Sea for the meteorological situation 10 September 2016
averaged from 08:00 UTC to 09:00 UTC. Shown is the difference at hub height of (a) potential temperature, (b) water vapor mixing ratio and
(e) wind speed between a simulation with wind parks (WF) and a simulation with no wind parks (NWF). The resulting changes of sensible
heat flux (sh) and latent heat flux (lh) are shown in (c) and (d). The sum of differences in sensible and latent heat flux is shown in (f). The
gray shading depicts areas where the SST is higher than the air temperature. Taken from Siedersleben (2019).
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Although some wind parks in the simulations are
much bigger than already existing wind parks in the Ger-
man Bight, the impact on temperature and water vapor
at hub height is not larger than observed on 10 Septem-
ber 2016 (Figure 13a–b). For example, the simulations
suggest a warming and a drying at hub height in the or-
der of 0.5 K and 0.5 g kg−1 downwind of the large off-
shore wind park cluster located in the west of the do-
main. For comparison, the already existing wind parks
around Amrumbank West cause a similar warming sig-
nal at hub height.

The warming induced by the wind parks in the rotor
area is partly associated with a decreased sensible heat
flux at the surface (Figure 13c). Two different processes
drive the reduction of the sensible heat flux rooted in the
different temperature gradients between the SST and the
lowest model level located at 17 m AMSL (Figure 14).
On 10 September 2016 we encountered areas with a
lower air temperature than SST (i.e. gray shaded area
in Figure 13, Siedersleben, 2019). During non-waked
conditions the sensible heat flux is orientated towards
the atmosphere in these regions, resulting in a warm-
ing of the lower atmosphere (Figure 14a). According to
aircraft measurements recorded on 10 September 2016,
the warming induced by the wind turbines was also ef-
fective at 60 m AMSL (see Figure 4a in Siedersleben
et al., 2018b). The simulations indicate that the warm-
ing at the rotor area even spread down to the ocean’s
surface. Consequently, a higher surface temperature re-
sults in a reduction of the temperature gradient between
air temperature and SST that in turn weakens the sen-
sible heat flux towards the atmosphere as it is schemat-
ically sketched in Figure 14a). In contrast, the sensible
heat flux is orientated towards the ocean in case of a
lower SST than air temperature (not gray shaded area
in Figure 13) during non-waked conditions. However, a
warming at the ocean’s surface results in an increased
temperature gradient between air temperature and SST,
resulting in an larger sensible heat flux pointing towards
the ocean (Figure 14b). Therefore, the net effect of the
warming at the surface is an increased sensible heat flux
towards the ocean (Figure 14b). However, the changes
in the sensible heat flux are not larger than 3 W m−2.

The impact of offshore wind parks on the latent heat
flux is determined by the temperature gradient between
SST and the temperature at the lowest model level (Fig-
ure 13d). In areas with a higher SST than air temperature
the simulated latent heat flux is decreased. In contrast,
the latent heat flux is increased in areas with a higher
air temperature than SST. As humidity usually has a
strong vertical gradient in the marine boundary layer
(decreasing with height), the latent heat flux is point-
ing upward regardless of the temperature gradient. Ob-
viously, the dryer air within the wakes of larger offshore
wind parks enhances the vertical moisture gradient, that
in turn should enhance the latent heat flux towards the
atmosphere. However, this is only true for areas with a
higher air temperature than SST (Figure 13d). In con-
trast, in regions with a lower SST than air temperature,

Figure 14: Schematic sketch of impact of offshore wind parks on the
sensible heat flux in case of (a) a SST higher than the air temperature
and (b) vice versa. WF is a wind park simulation with the wind farm
parameterization turned on, while NWF has the parameterization
switched off. Taken from Siedersleben (2019).

we observe a decreased latent heat flux (purple contours
in Figure 13e), although the latent heat flux is supposed
to increased due to dryer air within the wake. Hence,
we suggest, that the weakening of the temperature gra-
dient between SST and air temperature mainly drives the
changes in the latent heat flux.

The overall change in the surface fluxes is driven by
the changes in the latent heat flux (Figure 13f), in case
of inversions close to the rotor height. As the impact
on 10 September 2016 on the latent heat flux is almost
twice as much than the changes in the sensible heat flux
the net impact on the surface fluxes is dominated by the
changes in latent heat flux. As the changes in the latent
heat flux are determined by the temperature gradient
between the lowest model level and SST, so is the overall
impact: A cooling effect is present in areas with a higher
air temperature than SST and vice versa. However, we
only observed a change in the latent heat flux associated
with the existence of an inversion close to rotor height
Siedersleben et al., 2018b. Hence, the latent heat flux
only dominates the overall impact in case of an inversion
close to the rotor area otherwise only the sensible heat
flux is affected.

The effects discussed above were observed in six of
our flights, nevertheless for a sound climatology reliable
conclusion, further studies are mandatory.

5 Conclusion/Outlook

A unique dataset from airborne in situ data, remote
sensing by laser scanner and SAR gained during the
WIPAFF project proves that wakes up to several tens
of kilometers exist downstream of offshore wind farms.
The wind speed deficits in the wakes and their length
tend to be larger in stable than in unstable conditions.
The results show that the average wake lengths un-
der stable conditions exceed 50 km, while under neu-
tral/unstable conditions, the wake length amounts to
15 km or less. Data also indicates that a denser wind
park layout increases the wake length additionally due
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to a higher initial wind speed deficit. Turbulence occurs
at the edges of the wakes due to shear between the re-
duced wind speed inside the wake and the undisturbed
flow. The intensity depends on the strength of the wind
speed gradient and is further enhanced for denser wind
park geometries. In contrast, within the wake, turbulent
kinetic energy is reduced even compared to the undis-
turbed flow.

The observational data of the WIPAFF project was
further compared to industrial, analytical and mesoscale
models. The respective models show in general a good
correlation with the measured wake lengths, neverthe-
less, they also show deficiencies:

• As a first order approximation the analytical model
seems to work well, however it has to be optimized
to be able to account for the park layout and turbine
turbine-induced turbulence left over from the wind
park. This has to be improved in the future.

• The engineering model WindFarmer underestimates
the wake length during stable conditions when using
the default settings. Therefore, default settings of the
engineering model WindFarmer have been modified
to account for a slower wind speed recovery in stable
stratification (Cañadillas et al., 2020).

• The mesoscale WRF model enables the simulation of
a complete area like the German Bight. However, the
results of the simulations show that the WRF model
is highly sensitive to the upwind conditions. During
offshore winds (advecting warm air over the ocean)
strong inversions developed at rotor height that are
challenging for a mesoscale model. Hence, the up-
stream wind speed was sometimes underestimated
due to a wrongly predicted stratification in the model.

To accomplish accurate predictions of the wind en-
ergy production by numerical models, further effects
have to be taken into account, e.g. the blockage effects
of wind parks or how the state of the operation of wind
parks influences the wakes, which requires the analysis
of operational data. As such data was not available in
the WIPAFF project, this is a topic of future research
and implementation in numerical models.

Besides the wake effects, the influence of offshore
wind parks on the marine bounadry layer was investi-
gated by using the airborne observations and the WRF
model. The impact on the marine boundary layer de-
pends on several parameters. First of all, wind parks can
cause a warming or a cooling at hub height during sta-
ble conditions as discussed in Section 4.1.3. However,
the inversion can also be located such that a cooling at
the ocean’s surface takes place, although we only pre-
sented here a warming case. Secondly, only in case of a
pronounced inversion close to hub height we simulated
and observed a change in the water vapor mixng ratio
corresponding to changes in latent heat flux. Thirdly, the
net impact on the latent heat flux was determined by the
temperature gradient between SST and the ambient air
temperature.

Several potential impacts of offshore wind parks on
the marine boundary layer were not discussed in this
study i.e the formation of clouds. Huang and Hall
(2015) and Boettcher et al. (2015) showed that large
offshore wind park could have an influence on the cloud
cover. Consequently, wind parks could have an influence
on the radiation budget as well. These aspects were not
presented as we could not identify a clear impact of
offshore wind parks on the cloud cover or any radiation
budget due to lacking equipment.

Given the high sensitivity of the simulated impacts of
offshore wind farms, studies making general statements
about the impacts of offshore wind farms based on nu-
merical climate or mesoscale models should be carefully
examined. As discussed above, simulated impact on the
local climate is extremely sensible to the simulated sta-
bility in the lowest 200 m of the marine boundary layer.
Within the WIPAFF project we showed that mesoscale
simulations were lacking to represent the stable bound-
ary layer during offshore winds close to the coast, al-
though most wind parks are in the transition area from
coast to open sea and their impact is largest during stable
conditions (Siedersleben et al., 2018b).

The above documented results may have several con-
sequences.

5.1 Wind direction-based layout of wind parks

Analysis of data from FINO1 for the year 2005 shows
a clear correlation between wind direction and atmo-
spheric stratification in the North Sea (Emeis et al.,
2016). Stable situations are coupled to the main wind di-
rection (South-West). This direction-stability correlation
is assumed to be typical for the two temperate latitude
west-wind belts on both hemispheres of the globe, be-
cause it is caused by the usual sequence of warm sector
winds having a poleward component followed by cold
sector winds having an equatorward component in east-
ward moving low-pressure systems. The WIPAFF re-
sults clearly documented the dependence of the wake
intensity and wake length on atmospheric stratification.
Therefore, it could be advisable that wind park layout
and park cluster layout take this dependence into ac-
count. Figure 15 shows a possible array of wind parks
in the German Bight which reflects this correlation. Dis-
tances between single turbines within wind parks and
between entire parks are larger along the most frequent
direction of stably stratified flow (from Southwest to
Northeast) and they are shorter along the perpendicular
direction of unstably stratified flow.

5.2 Additional measurement requirements
and stability measures for the marine BL

For future estimations of wind park power output and for
improving analyses of offshore wind park wakes, a cru-
cial parameter was found to be profiles of temperature
and the stability parameter. Temperature inversions oc-
cur at different altitudes above, below and within the ro-
tor area. A near-surface, predominantly convective layer
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Figure 15: Schematic of stability-dependent wind park layout in
the German Bight. Crosses denote single wind turbines and boxes
indicate wind parks. North is towards the top. (Adapted from Emeis
et al., 2016)

may be present and an inversion with more stable condi-
tions may be found aloft. Therefore, a simple approach
for defining stability, e.g. the temperature difference be-
tween the sea surface and the atmosphere at one partic-
ular altitude, is not suitable for describing stability con-
ditions and wake development. In addition, other stabil-
ity parameters are partly inconsistent with each other.
Therefore, defining stability measures for the marine
boundary layers which can be representative for atmo-
spheric stability for an offshore wind park and the evo-
lution of wind park wakes is a very crucial task for the
future.

Moreover, the representation of temperature profiles
in numerical simulations and the deduced stability need
higher accuracy and improvement. The comparison of
the airborne observations and WRF simulations show
potential for improving the representation of coastal ef-
fects, where temperature profiles develop from the coast
to the wind parks. For example, from the simulations
of 15 October 2017 two profiles are compared to the
simulations, one close to the coast, one further offshore
(Figure 16). Close to the coast the simulation and ob-
servation show an inversion. However, the inversion of
the simulation is located above the rotor area, whereby
the inversion in the observations is located within the ro-
tor area. Further offshore, the performance of the model
improves slightly. Nevertheless, the height of the inver-
sion is still overestimated by 150 m. The numerical sim-
ulations where performed with the setup as described in
Siedersleben et al. (2018a). As the development of the
stability for the flow above the coast strongly influences
the wake extent, an improvement of the simulations is

required for correctly representing the inflow conditions
reaching the wind park. The availability of additional
measurements of temperature profiles at a coastal and at
an offshore locations could serve as reference and would
contribute to a better understanding of the processes in
the atmospheric boundary layer and the interaction with
wind parks and lead to improvement of numerical simu-
lations.

5.3 Impact on cloud development

On three out of 41 measurement flights, the formation of
small patches of clouds directly above the wind park was
observed. The cloud patches were transported down-
wind. No such clouds were observed in the lee and next
to the wind park. Cloud formation was observed on days
with relative humidity close to saturation, and slightly
stable conditions. The documentation of the clouds was
attempted by photographing. However, the image qual-
ity was hampered by other cloud layers above. The sen-
sors on board were not suitable for systematic analy-
ses of the phenomenon and its importance. This should
be addressed in future research in combination with the
analysis of downward heat and humidity fluxes above
wind parks.

5.4 Future SAR data evaluation

About one third of the SAR scenes with visible wake
structures show increased radar cross section values for
roughly the first 10 km of the wake downstream the wind
park. There are several approaches to explain this phe-
nomenon, which seems to be a paradox at first sight. One
possible explanation proposed in Djath et al. (2018) is
based on the hypothesis of increased downward momen-
tum fluxes caused by turbulence introduced by the wind
turbines. Making this assumption, SAR data would pro-
vide very valuable information on the advection and dis-
sipation of turbulence in the vicinity of offshore wind
parks. However, observational evidence is missing to
confirm or refute this or a number of other possible
mechanisms to explain the effect. Measurements are a
challenge in this context, because the sea surface rough-
ness measured by the radar is strongly dependent on the
detailed structured of the atmospheric boundary layer
close to the water. New measurement technologies and
sampling approaches are currently investigated to obtain
more information on this important region. These activ-
ities are not only of high value to improve our under-
standing of the atmospheric processes around offshore
wind parks, but are of more general relevance in the con-
text of atmosphere/ocean interaction, which is a field of
intense research worldwide.

A topic that is directly related to the phenomenon
just described, is the derivation of wind speed informa-
tion above the sea surface from microwave radar data.
Radar measurements have a direct physical connection
to the friction velocity at the surface, but wind speeds
at higher levels depend on the stability conditions in
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Figure 16: Vertical profiles of wind speed (a), potential temperature (b) and water vapour mixing ratio (c) obtained by probing the
atmosphere with the research aircraft on 15 October 2017 close to the coast (magenta solid lines) and further offshore (black solid lines).
The corresponding locations of the vertical profiles are shown in detail in Figure 1. The interpolated WRF data along the climb flights is
shown with the solid lines having the circles on top, whereby each circle represents a vertical level of the simulation.

the boundary layer, which are usually not well known.
The empirical functions used for SAR wind speed re-
trieval so far were usually derived based on observation
data sets taken in the open ocean, making very simplify-
ing assumptions about the conditions in the atmosphere.
This is another area of research, where more sophisti-
cated measurements of the atmospheric boundary layer
in near coastal areas could help to optimise the exploita-
tion of SAR information for offshore wind park applica-
tions. This issue is also related to the more general ques-
tion about the optimal integration of satellite, in situ and
model data to provide efficient information products to
the offshore wind park community.
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Abstract. As part of the ongoing X-Wakes research project, a 5-month wake-measurement campaign was con-
ducted using a scanning lidar installed amongst a cluster of offshore wind farms in the German Bight. The main
objectives of this study are (1) to demonstrate the performance of such a system and thus quantify cluster wake
effects reliably and (2) to obtain experimental data to validate the cluster wake effect simulated by the flow
models involved in the project. Due to the lack of free wind flow for the wake flow directions, wind speeds
obtained from a mesoscale model (without any wind farm parameterization) for the same time period were used
as a reference to estimate the wind speed deficit caused by the wind farm wakes under different wind directions
and atmospheric stabilities. For wind farm waked wind directions, the lidar data show that the wind speed is
reduced up to 30 % at a wind speed of about 10 m s−1, depending on atmospheric stability and distance to the
wind farm. For illustrating the spatial extent of cluster wakes, an airborne dataset obtained during the scanning
wind lidar campaign is used and compared with the mesoscale model with wind farm parameterization and the
scanning lidar. A comparison with the results of the model with a wind farm parameterization and the scanning
lidar data reveals a relatively good agreement in neutral and unstable conditions (within about 2 % for the wind
speed), whereas in stable conditions the largest discrepancies between the model and measurements are found.
The comparative multi-sensor and model approach proves to be an efficient way to analyze the complex flow
situation in a modern offshore wind cluster, where phenomena at different length scales and timescales need to
be addressed.

1 Introduction

Offshore wind energy, i.e., the use of wind farms built off-
shore or on the continental shelf to harvest wind energy for
electricity generation, is playing an important role in achiev-
ing a low-carbon future of economic prosperity. In 2020,
6.1 GW was commissioned worldwide. The total offshore
wind capacity has now passed 35 GW, representing 4.8 %
of the total global cumulative wind capacity. In particular,
Germany represents a 22 % contribution (7.8 GW) of the to-
tal installed power (Lee and Zhao, 2021). In the North Sea,

the available offshore area for wind energy is becoming in-
creasingly scarce. In order to contribute to the planned tar-
get of 30 GW by 2030 (long-term goal recently approved by
the German government) and to make wind energy extrac-
tion economically profitable, wind farms need to be installed
relatively close to each other. While this may be beneficial
in terms of infrastructure sharing, it may also be detrimental
to the overall energy extraction due to the influence of the
wakes generated by the upstream wind farms.

Therefore, knowledge of the prevailing wind conditions is
one of the crucial parts not only in the first phase of a po-
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tential offshore wind farm to accurately assess the wind re-
source, but also during the operation phase of the wind farm.
Although numerical simulations and the detailed analysis of
experiments in wind tunnels can provide good insight into
the actual conditions, high-quality in situ measurements in a
real environment are essential.

As the size of offshore wind farms increases and they are
grouped into larger arrays, also called clusters, wake effects
take on greater importance, not only affecting the surround-
ing wind conditions but also reducing the efficiency of power
generation for downstream wind farms. In the North Sea, for
example, the large size of wind farms and their proximity
affect not only the performance of single downstream tur-
bines but also that of whole neighboring downstream farms
(Cañadillas et al., 2020; Ahsbahs et al., 2020), which may
reduce the capacity factor by approximately 20 % or more as
suggested by Akhtar et al. (2021). The effect of atmospheric
stability on the extension of the wakes behind wind farms
has been intensively studied in recent years through a num-
ber of analytical and experimental studies (Christiansen and
Hasager, 2005; Emeis, 2010, 2018; Djath et al., 2018; Ahs-
bahs et al., 2018; Nygaard and Newcombe, 2018; Cañadil-
las et al., 2020; Ahsbahs et al., 2020; Platis et al., 2020), as
well as numerical investigations (Patrick et al., 2014; Sieder-
sleben et al., 2018b). For instance, Cañadillas et al. (2020)
analyzed data from a series of flights collected within the
wakes at several downstream distances of two offshore wind
farm clusters located in the North Sea during different at-
mospheric stability conditions. They found that stable strat-
ification leads to significantly longer wakes with a slower
wind speed recovery compared to unstable conditions. Their
results reveal that the average wake length (defined as the
downstream distance where the wind speed has recovered to
95 % of the free-stream wind speed) under stable conditions
exceeds 50 km, while under neutral/unstable conditions, the
wake length amounts to around 15 km.

The analysis of wind farm cluster wake interaction is a
complex task, as different interacting processes on multiple
scales have to be taken into account. On the one hand, these
effects depend on climatological and seasonal changes, and
on the other hand, the wind farms extend over very large ar-
eas, experiencing natural spatial gradients with regard to the
wind conditions. This makes it necessary to find new long-
term wind speed measurements of the incoming wind, im-
portant not only for wind farms already installed but also for
future wind farms to be installed in the vicinity of a cluster
(Neumann et al., 2020).

Due to the high spatial and temporal resolution, long-
range-scanning Doppler wind lidars (also lidar, light detec-
tion and ranging) have gained importance in the wind energy
industry for a variety of applications, such as wind resource
assessment (Neumann et al., 2020), wind turbine and wind
farm wake studies (Schneemann et al., 2020), and power per-
formance testing (Rettenmeier et al., 2014; Gómez Arranz
and Courtney, 2021). Especially in the offshore sector, tradi-

tional masts are associated with a high cost and long approval
processes. In contrast, scanning wind lidars are cheaper, very
flexible in terms of the scan set-up and the installation (for
instance, on a wind turbine transition piece), and easily ac-
cessible for system maintenance during the maintenance rou-
tines of wind farms. In the past, most studies, using scan-
ning Doppler lidar, have been limited to investigations of the
spatial wake characteristics of isolated wind turbines (Wang
and Barthelmie, 2015; Bastine et al., 2015; Bingöl et al.,
2010; Käsler et al., 2010) or individual wind farms (Sma-
likho et al., 2013; Aitken et al., 2014; Iungo and Porté-Agel,
2014; Herges et al., 2017; Krishnamurthy et al., 2017; Zhan
et al., 2020), such as the velocity deficit, the single wake
extent (length and width) of a wake, and wake meandering
(Trujillo et al., 2010; Krishnamurthy et al., 2017) under var-
ious atmospheric conditions. More recently, lidars have also
been used to study the wind speed reduction upstream of a
wind farm, the so-called blockage effect (Schneemann et al.,
2021). Only a few studies have focused on the effects of
cluster wind farm wakes on the wind speed (Schneemann
et al., 2020), the value of the scanning lidar measurements for
validating wind farm parameterizations in mesoscale models
(Goit et al., 2020) or simple wake engineering models used
for wind farm optimization and energy yield estimation (e.g.,
Brower and Robinson, 2012).

Mesoscale models are capable of resolving effects that are
relevant on these large scales using wind farm parameteri-
zations developed to account for the wind speed reduction
and turbulence increase downstream of wind farms (Fitch
et al., 2012; Volker et al., 2015). A validation of simulations
with airborne in situ data (Lampert et al., 2020) has been one
of the aims of the projects WIPAFF (Wind Park Far Field)
and X-Wakes (Interaction of the wake of large offshore wind
farms and wind farm clusters with the marine atmospheric
boundary layer) (Siedersleben et al., 2018b, a, 2020), and the
airborne datasets have been used as reference for the vali-
dation of simulations and parameterizations (Akhtar et al.,
2021; Larsén and Fischereit, 2021). In this study, in order to
determine the wake effects of interacting wind farms, data
from different measurement locations and methods are com-
bined with the aim of obtaining a comprehensive picture of
the wind situation in the region of an offshore wind farm
cluster.

This paper is structured as follows. Section 2 provides an
overview of the locations and datasets used, including a thor-
ough description of the scanning lidar set-up, airborne mea-
surements and mesoscale simulations. Section 3.1 presents a
direct comparison of the lidar data with high-resolution air-
borne data in the vicinity of the measurement location; visu-
alization of the aircraft measurements and a mesoscale model
data give an example of the spatial extent of wind farm clus-
ter wakes. Section 3.2 shows the influence of upstream wind
farms by comparing the scanning lidar data with mesoscale
simulations without the wind farm parameterization (to es-
timate the wind speed deficit) and with consideration of the
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wind farm wake (to compare the model output with the in
situ scanning data). After a brief discussion of the study,
the conclusions are presented in Sects. 4 and 5 respectively,
where the potential of the scanning wind lidar for validat-
ing wind farm parameterizations in numerical simulations is
highlighted.

2 Site and methods

A field campaign using a scanning Doppler lidar was con-
ducted at the western edge of the wind farm Gode Wind 1
in the German Bight (see Fig. 1) for a period of 5 months,
from May to September 2020. Additionally, data from the
Dornier 128 D-IBUF research aircraft of the Technische Uni-
versität (TU) Braunschweig are used for a single flight to
extend the range of the available wind speed measurements
upstream, around and within the wind farm cluster wakes.
Due to the lack of a free wind reference (without any flow
disturbance generated by the wind farms), high-resolution
mesoscale model data from the Weather Research and Fore-
casting model (without the wind farm parameterization, here-
after WRF) were used to assess the wind speed deficit due to
the presence of wind farms surrounding the lidar measure-
ment location. Moreover, the scanning wind lidar dataset is
used to evaluate the WRF model outputs considering wind
farm wakes with the wind farm parameterization of Fitch
(Fitch et al., 2012), hereafter referred to as the WRF-WF set-
up.

Starting from the location of the scanning lidar measure-
ments, five different sectors were defined for the subdivision
of the measurement data into different wind direction re-
gions. Figure 1 shows a map of the study area in the German
Bight with the defined wind direction sectors. The individual
regions are labeled R1 to R5.

A detailed description of the measurement methods can
be found in the following sections. For the classification into
the five different regions according to the wind direction, the
actual position of the profile measurements at a distance of
1.5 km west of the scanning lidar device was used. From
here, the positions of the outermost wind turbines of each
wind farm cluster were used to limit the area as presented in
Table 1. The regions R2 (south of the lidar location) and R5
(northwest) are not influenced by upstream wind farms. Re-
gion R1 (east) is influenced by the wind farms Gode Wind
1 and 2. Region R3 is influenced by the wind farm Nordsee
One and region R4 by the wind farm cluster N-2 composed
of the wind farms Trianel Borkum, Merkur, alpha ventus, and
Borkum Riffgrund 1 and 2 (see Table 2 for a summary of the
key characteristics of the wind farms surrounding the scan-
ning lidar measurements).

After dividing the measurements into different regions
based on wind direction, the lidar data have been further di-
vided into subsets of atmospheric stability, which is expected

Table 1. Ranges of the individual wind sectors (regions) and dis-
tances based on the measurement location of the scanning lidar sys-
tem.

Region Sector boundaries [◦] Distance to lidar
meas. point [km]

R1 [24, 170] 1.5
R2 [170, 186] (free wind)
R3 [186, 235] 8
R4 [235, 277] 20
R5 [277, 24] (free wind)

to strongly affect the wind speed downstream due to the pres-
ence of far-field wind farm wakes (Cañadillas et al., 2020).

In this study, we use the static atmospheric stability, which
only takes into account buoyancy effects and is characterized
through the lapse rate (γ ) based on the temperature gradient
at two different altitudes, sea surface temperature (SST) and
air temperature at the height of the transition piece (23.3 m)
corrected for air pressure and density effects to obtain the
virtual potential temperature (θv) gradient,

γ =
dθv

dz
≈
1θv

1z
, (1)

with z the measurement height. Negative values of the virtual
potential temperature gradient γ , or lapse rate, represent an
unstable stratification of the atmosphere; positive values rep-
resent a stable stratification; and values around zero represent
a neutral stratification. The stability classes were chosen as
follows:

– γ < −0.04: unstable stratification,

– −0.04 ≥ γ ≤ 0.04: near-neutral stratification,

– γ > 0.04: stable stratification.

A thorough discussion of different parameters used to
characterize stability and the influence on wakes is provided
by Platis et al. (2021), who use similar values to classify
atmospheric stability based on lapse rate. Ideally, it would
be optimal to measure the air temperature at hub height or
above, but due to the lack of measurements and consider-
ing that the air temperature measurements at the nacelle are
highly biased due to the rotor effect, we consider our esti-
mation to be suitable as a first-order approximation for the
framework of this study.

2.1 Scanning wind lidar

Wind data were recorded with a long-range-scanning
Doppler wind lidar system of the type Streamline XR man-
ufactured by Halo Photonics, UK (METEK-GmbH, 2021).
The lidar system emits short laser pulses into the atmo-
sphere and detects the radiation backscattered by aerosols
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Figure 1. Location of the scanning lidar between the wind farm clusters showing the five sectors (from R1 to R5) into which the data are
grouped for the analysis (dashed black lines). The individual wind turbines are represented by circles, and each individual wind farm is shown
in a different color. The location of the meteorological mast FINO1 is also indicated (red square). The WRF model grid point investigated in
this study is marked with a green star. Lidar system and lidar profile measurement locations are marked with a red triangle and a red diamond,
respectively. Coordinates refer to UTM WGS84, zone 32.

Table 2. Properties of the wind farms (as of May 2020) surrounding the scanning lidar measurement. The cluster name is defined by the
German Federal Hydrographic Agency BSH, wind turbine (WT) type within the wind farms, WT rated power (Prated), their rotor diameter
(D), hub height (h) for LAT (lowest astronomical tide) and the number of wind turbines (No. of WTs).

Cluster Wind farm WT type Prated [MW] D [m] h [m] No. of WTs

N-3 Gode Wind 1 and 2 Siemens 6 154 110 55/42
N-3 Nordsee One Senvion 6.2 126 90 54
N-2 Alpha ventus Senvion/Adwen 5 126/116 92/90 6/6
N-2 Borkum Riffgrund 1 and 2 Siemens/Vestas 4 120/154 83 78/56
N-2 Trianel Wind Farm Borkum 1 and 2 Adwen/Senvion 5, 6.3 116/164 87/111 40/32
N-2 Merkur GE 6 150 102 66

through optical heterodyning. This makes it possible to de-
termine both the intensity of the backscattered radiation and
its Doppler shift in the line-of-sight (LOS) direction, which
is proportional to its radial wind speed, also called LOS wind
speed.

The lidar system (see Fig. 2) was installed on the transi-
tion piece (TP) of the northernmost wind turbine (K01) of the
wind farm Gode Wind 1, at a height of approximately 23.3 m
LAT (lowest astronomical tide) and positioned on a metal
support structure for a clear view in the azimuthal range
[160◦, 20◦] over the railing to the west. In addition to the
scanning lidar device, other sensors for collecting thermody-
namic data (namely air temperature and humidity, pressure,
precipitation, and water surface temperature) were installed.
The purpose of these measurements was to characterize the
atmospheric stability regime with the method previously de-
scribed. The thermometer and hygrometer were mounted on

a 50 cm long boom at a height of 22.5 m LAT, and the barom-
eter was located in the control cabinet 50 cm below. The in-
frared sensor for measuring the SST was located on the rail-
ing of the TP and consists of a pair of sensors, with one sen-
sor pointed towards the sea surface and the other towards the
sky, which allows the temperature measurements to be cor-
rected for the effects of background radiation (refer to Früh-
mann et al., 2018, for further details).

The lidar system, with a maximum range of 10 km, was
set up with a gate length of 120 m. The sampling rate of the
back-scattered signal of 50 MHz gives a spatial resolution of
3 m along the LOS. Furthermore, the accumulation rate can
be reduced so that the highest beam sampling rate is 10 Hz.
The laser beam is directed by a scanner with an arrangement
of mirrors with 2 degrees of freedom, allowing scanning in
all directions. The positioning of the scanner at the top of the
lidar container box enables scanning of the sky above and a
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Figure 2. Long-range-scanning lidar and additional measurement
systems (on the right side) on the TP of one of the northernmost
wind turbines (K01) at the wind farm Gode Wind 1.

Table 3. Overview of scanning lidar set-up during the measurement
campaign.

Parameter Value

Target distance [m] 1500
Target heights [m] 40, 80, 120, 160, 200
Elevation angles [◦] 0.64, 2.17, 3.70, 5.22, 6.77
Azimuth sectors [◦] 230◦± 7.5◦ and 300◦±7.5◦

Scan duration [s] 75
Scan speed [◦ s−1] 3.17
Accumulation time [s] 0.6
Range gate length [m] 120

reduced area below the horizontal, without interference with
itself.

The lidar performed plan position indicator (PPI) scans (at
five elevations) with continuous scanner movement in two
azimuthal sectors of 15◦ width upstream of the wind turbine
K01. An overview of the lidar set-up is given in Table 3.

The set-up enabled the measurement of the wind profile in
the vicinity of the wind farm Gode Wind 1 (approximately
1.5 km west of the wind turbine K01). To derive vertical pro-
files, we generate a so-called partial velocity azimuth dis-
play (VAD) plot at several altitudes using a sinusoidal func-
tion fitted to radial velocity data (Werner, 2005), which is
represented as a function of azimuth. Then the results are
calculated in terms of the Cartesian velocity components (u,
v, w), and finally the wind speed and direction are derived.
The classical approach relies on four radial velocities mea-
sured at constant elevation and in four quadrants in the az-
imuth around the lidar. In our approach, we rely on several
radial velocities measured continuously on a limited area in
azimuth and constant elevation to avoid measurements influ-
enced by the wake of the wind farms Gode Wind 1 and 2. The

general sketch of the approach in Fig. 3a shows how data are
selected for the VAD plot near a target point and for several
heights (panel b). After selecting data for an altitude, a check
is made to see if the data meet a minimum carrier-to-noise
ratio (CNR), and then a sine function is fitted using random
sampling consensus (RANSAC) (Fischler and Bolles, 1981).
This last method is used to avoid the remaining outliers and
to increase the robustness of the fitting procedure.

As the lidar was positioned west of Gode Wind 1, the scan-
ning was performed to the western side, targeting five heights
above LAT, namely at 40, 80, 120, 160 and 200 m. In this free
sector, we followed the scanning trajectory shown in Fig. 4a
and with the scanner set-up shown in Table 3. In Fig. 4b,
an example of the VAD results for the wind speed and wind
direction for 1500 m and a height of 120 m is shown. In prac-
tice, every time a scan is finished, i.e., every 75 s (see key
scanning parameters in Table 3), a VAD is performed and
wind speed and wind direction at all five heights are stored.
Finally, these data are averaged over 10 min.

An important point to consider when measuring wind with
a lidar system is the orientation of the system. Orientation er-
rors in the scanning lidar affect the exact position at which
the wind is interrogated by the laser beam. Three angles
are used to fully define the orientation of the lidar in three-
dimensional space, namely bearing, tilt and roll. The further
the distance to the lidar, the larger the error in positioning
is, due to errors in one of these angles. It is therefore neces-
sary to determine these angles at very high accuracy in order
to reduce and properly quantify the positioning uncertainty.
While the offset in the azimuthal direction between the geo-
graphic north and the lidar’s north mark can be determined
with a compass, this is very inaccurate for the site installa-
tion because the turbine structure affects the magnetic field
around the lidar. A better option is to use the lidar itself and
neighboring turbines of which their position is known (“hard
targeting”). In this study, we target turbines of the neigh-
boring wind farm Nordsee One at distances between 8 and
10 km and identified them by their very high backscattered
signal with an accuracy of at least 0.1◦. In addition, the sys-
tem is equipped with an internal inclinometer, which is used
to quantify tilt and roll. However, the manufacturer does not
provide calibration information for this sensor. Furthermore,
due to the high relevance of these angles, it is desirable, if
not mandatory, to perform an on-site assessment of mount-
ing errors and inclinometer performance. For this purpose,
we apply the so-called sea surface leveling (SSL) proposed
by Rott et al. (2022) during the commissioning of the lidar
system at the offshore site. In this procedure, the sea surface
is used as a reference to assess the orientation of the lidar
system relative to the horizontal plane. Mainly, the scanning
lidar, which is installed several meters above the sea, is set to
perform a scan with constant downward elevation and con-
stant azimuth velocity. In this set-up, the backscattered lidar
signal describes the surface of a cone that extinguishes by
absorption as it enters the water. The geometric analysis of
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Figure 3. (a) Sketch of scanning for partial VAD. Shaded areas in blue represent areas where the wind is interrogated continuously. Areas
in red represent the volumes where data for VAD are selected. (b) Sketch of the vertical profile of the wind speed and wind direction at the
five target heights selected in this campaign, where L is the distance from the lidar system to the measurement location.

Figure 4. (a) Example of the top view of the radial wind speed (ur) for a single full scan taking approximately 75 s on 29 August 2020.
Eastings and northings are given in meters and relative to the lidar position. (b) Example of VAD data selected from the scan in (a) for
a distance of 1500 m±150 m and a height of 120 m±5 m. The bottom legend shows results for the radial wind speed fit. The top legend
indicates results of the wind speed.

the elliptical shape of the intersection of the cone with the
water surface (see Fig. 5) provides the tilt and roll angles of
the cone axis and thus of the lidar itself.

We adopt the results of the SSL method as a reference be-
cause they show the misalignment of lidar, scanner and sup-
port structure combined in a direct way. For this reason, the
misalignment results from the SSL can be used in trajectory
planning. Eventually, the data could also be used to calibrate
the internal inclinometer or any other auxiliary inclinometer
used in a campaign. The SSL is performed regularly to check
if the alignment has changed.

To assess the robustness of the SSL and its performance
against the internal inclinometer of the scanner system, we
ran the SSL continuously for almost 18 d from 6–24 August
2020. Figure 6a and b show, respectively, the time series of
tilt and roll obtained from the SSL and the internal incli-
nometer. Each time step represents the result of a full SSL
scan (with a duration of about 2.5 min) and the corresponding
mean value of the inclinometer data. In addition, the standard
deviation of the inclinometer is shown as a band of ±σ . The
results show a good correlation between the two signals. The

Figure 5. Example of backscattered signal intensity after SSL scan-
ning. Red dots show the estimated water entrance. The red ellipse
and its axes reveal a misalignment of the sensor. The blind area to
the east is due to the turbine tower.

SSL indicates a different bias in each axis of the inclinome-
ter, namely tiltbias =−0.05◦ and rollbias =+0.05◦. A change
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Figure 6. (a) Lidar tilt from internal inclinometer (internal, red) and from SSL (blue). The red band shows the standard deviation (SD) of
the inclinometer tilt during each SSL scan. (b) Lidar roll from internal inclinometer (internal, red) and from SSL (blue). The red band shows
the standard deviation (σ ) of the inclinometer roll during each SSL scan.

in mean tilt and roll over time can be observed. This is due
to the varying conditions of the support structure. In particu-
lar, the thrust of the wind turbine changes the magnitude and
direction of the tower inclination depending on the wind di-
rection and wind speed. The error between the two sensors
(now assuming SSL as the sensor) can be seen in Fig. 6a and
b. After debiasing both errors, we obtain mean-square errors
of εtilt = 0.01◦ and εroll = 0.02◦. Finally, the variance of the
inclinometer is a consequence of the system dynamics, which
must be taken into account when assessing the accuracy of
the scanner alignment. The total variance of the inclinometer
signals is σtilt = 0.23◦ and σroll = 0.24◦. It should be noted
that in the absence of information on the calibration of this
sensor, we assume this value to be conservative. This is based
on the assumption not only that the sensor perfectly detects
rotational changes but also that the resulting values are a su-
perposition of rotational and translational movements.

2.2 Mesoscale model

Mesoscale simulations, including both undisturbed free wind
conditions and the wake-disturbed wind field due to the sur-
rounding wind farm, were performed using the WRF model
(version 4.2.1) developed by the National Center of At-
mospheric Research (Skamarock et al., 2019). In the WRF
model, there are prognostic variables for the horizontal and
vertical wind components, potential temperature, geopoten-
tial and surface pressure of dry air as well as several scalars
such as cloud water and water vapor. The WRF model is
well known and widely used in the wind energy community
(Huang et al., 2014; Hahmann et al., 2020; Kibona, 2020),
and in recent years also for wind farm wake simulations
(Pryor et al., 2019; Siedersleben et al., 2018b).

Our set-up was optimized within several research projects
for wind energy applications, especially with a focus on off-
shore conditions (Gottschall et al., 2018; Dörenkämper et al.,

2020; Gottschall and Dörenkämper, 2021). The studies by
Gottschall et al. (2018) and Gottschall and Dörenkämper
(2021) compare the mesoscale model data from a similar set-
up against vertical lidar and mast measurements. The WRF
model set-up is based on the extensive sensitivity studies
carried out in the framework of the NEWA (New European
Wind Atlas) project (Hahmann et al., 2020; Dörenkämper
et al., 2020). The final set-up was validated against almost
300 masts in different terrain complexity. In low terrain com-
plexity this set-up showed a bias of the mean wind speed of
0.06 m s−1

± 0.49 m s−1 evaluated at 110 masts. To limit the
number of grid points in the numerical calculations, a nest-
ing technique is used. Three domains centered around the
German Bight area are nested, each of a size of 120 grid
points with resolutions of 18, 6 and 2 km. Figure 7a shows
the distribution and size of the three domains around the site
of interest.

The wind turbines were parameterized as momentum sinks
and source of turbulence using the Fitch wind farm parame-
terization (Fitch et al., 2012). In every grid that intersects
the rotor disk, the horizontal wind components are reduced
to represent the drag of the wind turbine. Different thrust and
power curves corresponding to all turbine types were applied.
Figure 7b shows the locations of the turbines in the model
simulations. Boundary conditions for the model were pre-
scribed by the ERA5 dataset (ERA5 resolution, 0.25◦×0.25◦

(∼ 30 km), 6-hourly) for the atmospheric variables (Hers-
bach et al., 2020) and the OSTIA dataset for the sea sur-
face variables (Donlon et al., 2012), which provides near-
real-time global sea surface temperature at the grid resolu-
tion of 1/20◦ (∼ 6 km). The WRF version used in this study
does account for the turbulent-kinetic-energy advection bug
that was recently discovered (Archer et al., 2020).

We performed simulations with and without wind farms
and extracted the time series from the WRF simulations at
the position of the scanning lidar measurements for the same
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Figure 7. (a) Locations of the three WRF model domains (D01, D02, D03) with a grid sizes of 18, 6 and 2 km, respectively. The innermost
domain (D03) of (a) is shown in detail in (b) with the locations of the wind turbines accounted for in the simulations and the location of the
lidar measurements marked in red. Note that wind farms with a distance of more than 100 km from the site were ignored.

period. The most important settings of the mesoscale model
configuration are summarized in Table 4.

2.3 Airborne measurements

The spatial extent of the wind farm wakes can be briefly in-
vestigated by considering one of the measurement flights car-
ried out during the scanning wind lidar measurement period
with the research aircraft Dornier DO-128 operated by the
Technische Universität Braunschweig (Lampert et al., 2020).

Although the flight data are limited to a few hours within
a single day, they provide an overview of the wind situation
at different distances and vertical profiles both upstream and
downstream of the wind farm clusters. The research aircraft
is equipped with a nose boom to perform high-resolution
measurements of the wind vector, temperature, humidity
and pressure, sampling at a frequency of 100 Hz (Corsmeier
et al., 2001). Sensors for measuring the surface temperature,
a laser scanner for determining sea state characteristics and
cameras were also integrated (Lampert et al., 2020). During
the measurement flights, both the upstream and downstream
areas of the wind farm clusters were investigated. The flight
pattern included legs of 45 km length that were aligned per-
pendicular to the main wind direction, therefore crossing the
wakes, and vertical profiles from around 15 m altitude up
to 1000 m. The individual straight flight legs were horizon-
tally spaced about 10 km from each other. The measurement
height was 120 m above sea level, which corresponds to the
hub height of the wind farms Gode Wind 1 and 2.

An example of a flight dataset showing multiple wake-
transect profiles perpendicular to the mean wind direction,
measured downstream of clusters N-2 and N-3 on 3 July
2020, is briefly presented in the next section.

3 Wind field modification by wind farm clusters

The strong modification of the wind field by the wind farm
clusters is clearly evident in scanning lidar measurements,
flight measurements and WRF simulations. Flight measure-
ments enable an initial side-by-side evaluation of the WRF
model over a larger spatial scale than is possible with just the
scanning lidar system and illustrate the strength and extent of
wind farm cluster wakes (Sect. 3.1). The lidar measurements
are then compared with WRF model results with and without
a wind farm parameterization for the different sectors and at-
mospheric stability conditions, which enables an evaluation
of WRF performance for different upstream wind conditions
(Sect. 3.2).

3.1 The spatial extension of cluster wakes

Because of the extended range of flight paths around the wind
farm clusters, the flight measurements are presented here to
complement the lidar measurements. We consider the wake
situation of the N-2 and N-3 clusters on 3 July 2020 (10:24–
13:02 UTC) when flight legs were performed perpendicular
to the mean wind direction (≈ 230◦) and taking on average
10 min per traversal. The cluster wake limits in Fig. 8a are
defined as the physical cluster extent which expands with dis-
tance x at the rate of kw = 0.04 (wake decay constant for off-
shore as suggested by Sørensen et al., 2008.

The spatial distribution of the measured wind speed is in-
ferred in Fig. 8a from the flight legs extending perpendicular
to the wind direction. Darker colors, representing lower wind
speed values, are evident directly behind the wind farms and
more dense clusters of wind turbines. In particular, the strong
reduction in wind speed downstream of cluster N-2, which
is located to the west, but also the wind farms Gode Wind
1 and 2, which are located further to the east, can be clearly
seen. Behind the northeastern edge of Gode Wind 2, the wind
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Table 4. Relevant parameters of the mesoscale model set-up. The references for the different schemes and models are summarized in WRF
Users Page (2020).

Parameter Setting

WRF model version 4.2.1
Planetary boundary layer (PBL) scheme MYNN level 2.5
Wind farm parametrization Fitch et al. (2012)
Land use data MODIS
Surface layer scheme MYNN
Microphysics scheme WRF single-moment five-class
Shortwave and long-wave radiation RRTMG
Atmospheric boundary conditions ERA5
Sea surface conditions OSTIA
Horizontal resolution 18, 6 and 2 km
Vertical resolution 60 eta level
Nudging Grid nudging above PBL
Model output interval 10 min
Nesting One-way
Land surface model Unified Noah Land Surface Model
Simulation duration 240 (+24 spin-up) hours

speed is about 7.5 m s−1. Upstream of the wind farm, the
wind speed is about 11 m s−1, which corresponds to a reduc-
tion in wind speed of about 30 %. Stability during this pe-
riod was inferred from vertical temperature profiles outside
the wake area influenced by the wind farm clusters by steep
climbing and descending flight profiles up to an altitude of
about 1000 m, which reveal, after an initial close-to-neutral
period (−0.005 K m−1), stable conditions (with a maximum
value of 0.01 K m−1) for the last legs and thus explain the
strong wakes detected.

Figure 8b shows the horizontal wind speed transect for
the closest flight traversal (black line) upstream of the li-
dar measurement point (x =−0.33 km) compared with the
mean wind speed according to the lidar (green diamond) and
standard deviation for the duration of the flight leg (error
bars), revealing a suitable agreement between the two mea-
surements for this flight (mean bias = 0.06 m s−1). For this
leg, the lapse rate was −0.003 K m−1, implying neutral con-
ditions, which explains the relatively high turbulence signal
in the 100 Hz data (gray line). The flight leg was performed
between 11:27 and 11:37 UTC.

For comparison, the WRF-WF model results for the times
10:00 (red dotted curve), 11:00 (blue dotted curve) and 12:00
(purple dotted curve) UTC are shown for a transect corre-
sponding to the flight coordinates. Note that for this particu-
lar time period, there is an approximate time delay of around
1 h, which is common in WRF results. The flight altitude cor-
responds to approximately 120 m, corresponding to the mean
hub height of the N-2 and N-3 clusters and the mean wind di-
rection of 228◦ for this transect. While these data also show
a decrease in the wind speed between the limits of the cluster
N-2, the wind speed of the wake minimum is about 0.5 m s−1

higher than the flight leg. The mean wind direction differ-

ence between the flight leg and the simulation is about 10◦.
It is worth mentioning that the WRF simulation does not take
into account the wind farms located at about 15 km east of the
cluster N-2 (Gemini wind farm), which could explain the dif-
ference of more than 1 m s−1 at the northern part of the wind
farm wake (negative x axes).

Figure 9 shows the WRF-model-simulated horizontal
wind field with the wind farm parameterization at mean hub
height (120 m) and at different time steps.

Both the observations (Fig. 8a) and model (Fig. 9) show a
wake extending at least 40 km downstream of the N-3 wind
farm cluster, meaning this wake was long enough to reach
the wind farm cluster N-4 (not shown) located about 60 km
downstream of Gode Wind. In the spanwise direction, the
wake has dimensions of approximately the maximum width
of the wind farms. The simulations for different time steps in-
dicate the temporal variability of the wind field well, which
has to be considered for a flight duration of 4 h as well. As
shown next, significant wake effects were detected by the
scanning lidar for cases such as these for flow from the east.

3.2 Directional and stability dependence of cluster
wakes

We evaluate the lidar-derived wind speed measurements by
first dividing the wind direction into five unequal sectors
within the cluster wakes (see Fig. 1). The lidar measure-
ments are then compared with mesoscale model results with-
out and with a wind farm parametrization for the different
sectors, which enables (1) an estimation of the wind speed
deficit when using the model without wind farm parametriza-
tion and (2) an evaluation of the model (with wind farm
parametrization) performance for the different upstream con-
ditions. Note that because the stability is also wind direction
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Figure 8. (a) Flight path in the vicinity of the clusters N-2 and N-3 (individual turbines as black points) of the measured wind speed from
the measurement flight on 3 July 2020 (10:24–13:02 UTC). The black dashed lines indicate the downstream boundaries of the clusters for the
measured wind direction of 230◦. The flight altitude during the traversals of the wake clusters was≈ 120 m, and the coordinates refer to UTM
WGS84, zone 32. (b) Horizontal wind speed transect for the closest flight traversal upstream of the lidar measurement point (x =−0.33 km,
where the negative sign refers to the left of the location of the measurements obtained by scanning lidar) and perpendicular to the wind
direction. The gray line represents the 100 Hz data, the black line shows the data filtered by a moving average and the green diamond with
error bars represents the lidar mean wind speed and its standard deviation for the duration of the flight leg (≈ 10 min). The red, blue and
purple dotted lines show the WRF results with a wind farm parameterization (WRF-WF) from a transect of the model results at 10:00, 11:00
and 12:00 UTC, respectively, based on the flight coordinates.

Figure 9. Spatial distribution of the modeled wind speed (see color bar) from the WRF simulation with a wind farm parameterization on 3
July 2020 at different time steps. The dashed gray line indicates the position of the flight leg shown in Fig. 8b.

dependent at this site, some sectors are affected more by cer-
tain stability conditions.

Figure 10a shows the wind rose from the lidar measure-
ments together with the five wind direction regions R1–5,
illustrating the predominance of a west-southwesterly wind
direction for the data period presented here, which corre-
sponds to the main meteorological wind direction in the Ger-
man Bight area (Cañadillas et al., 2020). Figure 10b shows
the Weibull distribution for the wind speed together with the
scale parameter A and shape parameter k for each region

R1–5 at 120 m. This illustrates that meteorological condi-
tions and wind speed distributions within a region are very
different, so that a direct comparison of wind data between
the different sectors does not make sense due to the different
flow conditions found in each sector. (For a more detailed
depiction of the lidar data distribution for different sectors,
please refer to Appendix B.)

The wind roses derived from lidar data for different at-
mospheric stabilities are shown in Fig. 11, illustrating that
a large part of the data obtained during stable atmospheric
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Figure 10. Wind rose (a) and Weibull distribution per regions R1–5 (b) at 120 m altitude measured by the scanning wind lidar for the period
from May to September 2020.

stratification correspond to flow from the east. With neutral
atmospheric stability, southwesterly winds prevail, while in
unstable stratification northwesterly winds are predominant.
Unstable and neutral conditions are associated with higher
average wind speeds than stable conditions.

The wake-induced wind speed reduction at the position
of the lidar measurements is investigated for each wind re-
gion using a polar plot for which the mesoscale simulation
results (without wind farm parameterization) are used as the
reference free wind speed. Since the model data represent
an undisturbed state not influenced by wind farms, differ-
ences in the wind conditions are to be expected when com-
paring the two datasets. Especially in the regions R1, R3 and
R4, which are directly influenced by the wind farm clusters,
lower measured wind speed values are expected. Figure 12
shows the direct comparison of the wind speed values per
wind direction of the lidar and the mesoscale model data at
120 m height for (a) unstable, (b) neutral and (c) stable at-
mospheric conditions. To aid visualization, the boundaries of
the regions R1 to R5 and the individual positions of the wind
turbines are also indicated.

Relatively good agreement is found between both datasets
in unstable conditions and in region R2 in neutral conditions.
The difference in wind speed in the other regions is also min-
imal under unstable stratification where the influence of the
wind farms is difficult to detect in the measurements since
wind farm wakes are not expected to be large. In contrast, a
comparison of the datasets for neutral and stable atmospheric
stratification shows a clear discrepancy between the measure-
ments and model results, with this difference particularly ev-
ident in the regions R1, R3 and R4, which are directly in-
fluenced by wind farm clusters. The maximum difference is
about 4 m s−1 in region R3 in stable stratification. Even with
neutral stratification, a difference can be seen in the two wind
speed datasets and the regions influenced by wind farms. In
the free-wind region, however, both datasets agree very well.
The strong fluctuations in the wind speed of the lidar data in
region R1 are due to the very small amount of data in neu-

tral stratification (see Fig. 12). For region R5, in the case of
stable atmospheric stratification, there are no or too few data
available in some wind direction sectors. A comparison of
the data from the free-wind sector is not possible here. Nev-
ertheless, the reduction in wind speed caused by the wind
farms in the other regions can be clearly seen.

To quantify the effects of the wind farm wake in the dif-
ferent regions, the wind speed deficit (εWRF) of the lidar-
measured wind speed ulidar with respect to the mesoscale
wind speed uWRF is defined as

εWRF =

(
ulidar

uWRF
− 1

)
100% (2)

and presented in Fig. 13a, which is computed as an average
over all points in each wind direction region for unstable,
neutral and stable conditions. The bars within a group rep-
resent the five measurement heights of 40, 80, 120, 160 and
200 m, and the number of 10 min lidar values within a bar is
shown at the end of the bar.

The wind speed deficit εWRF in region R5, the free-wind
region, is small for neutral and unstable conditions (< 10 %),
especially for unstable stratification (1 %–2 %), for all mea-
surement heights. For the second free-wind sector R2, only
small differences between the WRF model and lidar data are
evident in the case of unstable and neutral atmospheric strati-
fication. However, the results in this sector vary strongly with
height. One possible reason for this is that the lateral extent
of the narrow undisturbed corridor in region R2 is too small,
only about 3 km, and that the boundaries of the wake effects
become wider with increasing distance to a wind farm due to
the wake expansion. This effect is enhanced by a stable at-
mosphere. Even when the corridor was further narrowed by
changing the region boundaries of R2, no effect similar to
R5 was detected. The small horizontal extent of the corridor
and the large distance of the lidar measurement site from this
area make a differentiated evaluation of region R2 difficult.

The regions R1, R3 and R4 influenced by the wind tur-
bines all show a relatively large wind speed deficit. As ex-
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Figure 11. Wind roses measured by the scanning lidar for different atmospheric stabilities at 120 m above LAT. The regions R1–5 are
indicated by dashed lines.

pected, the εWRF values measured are generally lower (neg-
ative) than the values from the undisturbed computational
model at all heights and stability conditions, particularly
in stable stratification. In region R4 and at a measurement
height of 120 m, εWRF ≈−30% in stable stratification. It
is also noticeable that the reduction in wind speed shows a
negative trend with increasing height. While the maximum
height of the lidar measurements may be 200 m and most of
the wind turbines in the surrounding area have a total height
between 140 and 180 m, some interaction effects can also
be detected above the wind farm due to vertical wake ex-
pansion (Siedersleben et al., 2018a; Larsén and Fischereit,
2021). However, as measurements at a height of 200 m are
only partially influenced by the wind turbines, as they are
no longer completely behind the rotor surface, this probably
explains the lower wind speed deficit at 200 m.

The wind speed differences can be further emphasized for
different atmospheric stability conditions within a region.
Here it is noticeable that, in regions R4 and R3, a strong re-
duction in wind speed behind the wind farms with increasing
atmospheric stability can be seen, but this is much less pro-
nounced in region R1. As regions R3 and R4 have a larger
distance to the measuring point of the lidar than region R1,
it can be assumed that, in an unstable atmosphere, the wind

speed recovers more quickly in the wake of a wind farm than
in stable conditions, as also shown in Cañadillas et al. (2020).

The lateral extent of a wind farm, i.e., the number of wind
turbines in the flow direction as well as the wind turbine lay-
out, also affects the strength of the change in wind conditions
in the wake of a wind farm cluster. Region R3 is influenced
by the wind farm Nordsee One. Here, a maximum of six to
seven wind turbines are located behind each other in the flow
direction. In region R4, which is influenced by the wind farm
cluster N-2, the number of wind turbines in the direction of
flow is 17 to 20 turbines, depending on the wind direction.
This effect is evident when considering the wind speed dif-
ferences in regions R3 and R4 under unstable atmospheric
conditions. Although the distance of the wind farm in region
R3 to the measurement location of the lidar is significantly
smaller, the reduction in wind speed is smaller than in region
R4. A possible reason for this is the size of the wind farm
cluster in R4.

Figure 14 shows a polar plot comparing WRF results,
both without and with wind farms, with the lidar measure-
ments, for all atmospheric stabilities detected during the
measurement period. To ensure a fair comparison between
the mesoscale (WRF-WF) model and the lidar, hourly pro-
duction data from energy charts (available at https://www.
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Figure 12. Wind speed polar plots of the lidar measurements and WRF results (without the wind farm parameterization) for (a) unstable, (b)
stable and (c) and neutral atmospheric stratification at the height of 120 m. Wind turbines are indicated by gray points and the regions R1–5
by dashed gray lines.

energy-charts.de/, last access: July 2021) were used for filter-
ing purposes. Only wind farms in operation at the measure-
ment times are included in the mesoscale simulations and
thus considered in the comparison.

Wind speed deficits of up to about 30 % are shown for the
easterly winds at a distance of 1.5 km and up to 15 % for
the southwesterly flow at a distance of about 20 km. On the
other hand, the lidar (blue) and WRF-WF (green) data show
improved agreement between the two datasets for all direc-
tions with a difference in wind speed of about 2 %, indicating
that the WRF-WF model with the wind farm parameteriza-
tion included is capable of capturing the mean wake effects
detected by the in situ measurements.

As for Fig. 12, the data presented in Fig. 14 are divided
into unstable (a), stable (b) and neutral (c) conditions in
Fig. 15 for the WRF model with the wind farm parameter-
ization (green line) and for the scanning lidar (blue line).
A good agreement is found for most of the regions (R1, R4
and R5) under unstable conditions with a wind speed differ-
ence of around 2 % in wind speed. The larger disagreements
in wind speed (almost 15 %–20 %) are found under stable

conditions for the regions R1 (downstream of the large wind
farm clusters Gode Wind, N-2) and R2 and of around 10 %
for the region R3 (downstream of the relatively small wind
farm Nordsee One).

Figure 13 (lower panels) also presents the wind speed dif-
ference for the mesoscale model εWRF-WF. In general, the
wind farm parameterization reduces the absolute magnitude
of the wind speed difference εWRF-WF in the waked regions,
especially for regions R1 and R4 to, respectively, the east and
west of the lidar for all stability classes, and for region R3
to the southwest of the lidar, except for unstable conditions
where the value of εWRF-WF is more positive for all heights.
This could be due to coastal effects to the south not being
properly captured by the model (see also the southern part
of the polar plot in Fig. 15a). The difference in the narrow
region R2 to the south is also worsened by the wind farm
parameterization, including for all stability classes. Our lidar
measurements thus serve as a reference for further improve-
ments in wind farm parameterizations.
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Figure 13. The deficit εWRF (Eq. 2) in the wind speed between the lidar measurements and WRF model for (a) no wind farm parameterization
udiff(WRF) and (b) with the wind farm parameterization εWRF-WF for regions R1 to R5; for each measurement height 40, 80, 120, 160 and
200 m; and for each stability class. The number below and above each bar indicates the number of 10 min wind speed values.
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Figure 14. Wind speed polar plot of the lidar (blue) and WRF
model without (red) and with wind farm influences (WRF-WF,
green) at 120 m. Wind turbines are indicated as gray points, and
the sectors are indicated as dashed gray lines.

4 Discussion

In this study measurements of wakes inside an offshore clus-
ter are reported for the first time. Data of a lidar scanner
installed on the transition piece of a wind turbine located
within a cluster in the German Bight are collected and an-
alyzed within a 5-month field campaign. As part of the goals
of this study, a detailed description of the experimental set-
up and an uncertainty estimation have also been presented.
We have implemented a method for obtaining a representa-
tive wind speed vertical profile with a single scanning lidar
for areas nearby offshore wind farms. The method comprises
two novelties in the application of scanning lidars offshore.
First, we used a lidar VAD analysis to deliver wind charac-
teristics in a domain between 1 and 2 km instead of concen-
trating on one-point measurements. Second, we used what
we call partial VAD to derive area-equivalent wind speed
and wind direction. We selected the area-equivalent approach
to obtain more representative wind characteristics, especially
across inhomogeneous flow. Moreover, we expected the spa-
tial “averaging” effect to make the results more comparable
to mesoscale models. The results presented in this paper sup-
port our hypothesis that such a measurement approach is also
robust in wind farm wakes and can be applied for resource
assessment. On the technical side, this is the first time, to
our knowledge, that this type of scanning and data process-
ing have been implemented. One usually obtains wind speed
profiles with scanning lidars in the vicinity of wind farms
using a dual-Doppler-lidar approach. This means that two
scanning lidars operate simultaneously. With our approach
we considerably reduce the campaign complexity and exe-
cution costs. This has advantages for the industry and is po-
tentially an application for campaigns where fixed structures

and existing infrastructure can be used to install the scanning
lidar. Finally, this could be an alternative to floating lidars
for some measurement campaigns near wind farms. More-
over, these systems can be relatively easily installed on the
TP of an offshore wind turbine. So far, there is no standard
similar to that existing for other remote sensing systems, for
instance, vertical ground-based lidars (e.g., as part of IEC-
61400-12). In addition to the scanning lidar, we describe a
novel way to easily estimate the stability of the atmosphere
by installing air temperature and sea surface temperature sen-
sors on the railing of the TP. Normally, air and sea temper-
ature and humidity are not measured in close proximity to
wind measurements at offshore locations when using a lidar
system. However, several previous studies have shown that
the stability of the atmosphere plays a decisive role in the
value of the wake deficit, so it is necessary to have an esti-
mate of this parameter. We used a WRF model to estimate the
wind deficit as no undisturbed wind measurements are avail-
able during the scanning survey campaign in the area, which
is a general problem of such an inner wind farm cluster anal-
ysis. High-fidelity WRF model simulations are used to (1)
estimate the average wind speed deficit and (2) compare the
inter-wake effects simulated by the model with the scanning
lidar data. Analyses are performed for different in-flow di-
rections based on the obstacle encountered at the measure-
ment position (i.e., a wind farm in the case of Nordsee One
or a wind farm cluster) and for different atmospheric stabili-
ties. For the comparison of measurements to the WRF model,
10 min time series of wind simulations were extracted at the
position of the scanning lidar measurements and without tak-
ing into account the effect of the turbines on the model. We
have demonstrated that our lidar measurements are able to
quantify wake effects within a modern offshore cluster. The
dependency of the results is plausible in the sense of external
parameters like atmospheric stability.

5 Conclusions

Interaction effects between wind farm clusters N-2 and N-
3 in the German Bight are demonstrated via the analysis
of data from a scanning lidar, airborne measurements and a
mesoscale model. Lidar measurements combined with me-
teorological sensors reveal the strong directional and stabil-
ity dependence of the wake strength in the direct vicinity of
wind farm clusters. For sectors without upstream wind farms,
the scanning lidar data agree with the mesoscale simulations
of the undisturbed flow in unstable, neutral and stable atmo-
spheric conditions. In region R5 (sector free of wind farms
to the north), the maximum wind speed deficit is about 2 %,
whereas in region R4 a reduction of up to 30 % was observed.
The magnitude of the deficit increases in all other regions
with increasing atmospheric stability.

The wakes still have an influence at 200 m altitude, but it
is much smaller than at hub height. This effect is also appar-
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Figure 15. Wind speed polar plots of the lidar measurements and WRF-WF results (with the wind farm parameterization) for (a) unstable,
(b) stable and (c) neutral stratification at the height of 120 m. Wind turbines are indicated by gray points and the regions R1–5 by dashed
gray lines.

ent when examining the wind speed at other measurement
heights.

This observational dataset allows for numerical model val-
idations. Taking into account the mesoscale wind farm pa-
rameterization (WRF-WF), overall, the model performs rea-
sonably well and is able to capture the wake trend. A good
agreement is found for most of the regions (R2, R3 and R5) in
unstable conditions, with a relative deviation of around 2 %
in wind speed. As expected, the larger disagreements in wind
speed (almost 20 %) are found for stable conditions for the
regions R1 and R4, amounting to around 10 % for region R3.
This means that mesoscale wake simulations still have defi-
ciencies in correctly reproducing the atmospheric stratifica-
tion and its influence on the development and decay of wind
farm wakes. Scanning wind lidar measurements are therefore
a powerful tool for the evaluation and improvement of wind
model simulations and in particular wind farm parameteri-
zations. We conclude that the scanning Doppler wind lidar
is a flexible, accurate and robust tool for deployment inside
wind farm clusters for the investigation of the flow phenom-

ena therein. Further work is ongoing to establish longer-term
measurement campaigns and comparisons with standard in-
dustry models.

Appendix A: Quantification of scanning wind lidar
uncertainties

Any field measurement has inherent uncertainties which have
to be estimated. Typically, standards agreed on by the in-
dustry are used to quantify them. In the case of scanning
wind lidar, no standard has yet been developed, so in this
section we explain the uncertainties that we found to be rel-
evant in the context of this study. In Table A1 we show the
summary of uncertainty components. Where applicable, the
analysis is based on the methods described in IEC-61400-
12-1 (2017) and on industry-accepted best practice guide-
lines (Wagner et al., 2016; Franke, 2018). Each of the indi-
vidual uncertainty components is explained in the following
sections. Some of them are obtained by known procedures,
while others are quantified based on procedures we derived
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Figure A1. RMSE of simulated VAD. The resulting RMSE is cal-
culated for 100 runs of each combination of parameters as shown in
Table A2. Lines in red represent values weighed with the frequency
distribution of wind speed and wind direction at the site. The dashed
line represents the average of the continuous red line.

specifically for the set-up used in this campaign with a con-
servative approach.

A1 Calibration

Prior to offshore deployment of the lidar, a calibration of the
system was performed using a reference measurement. For
this campaign, the calibration of the system was performed
according to the calibration procedure for conventional ver-
tical profilers (IEC-61400-12-1, 2017) at UL’s test field in
Wehlens in northern Germany. This means that we repro-
duced the measurement performed by a short-range vertical
profiler with an elevation angle of 60◦. The uncertainties ob-
tained in this way are assumed to be conservative if com-
pared to a line-of-sight calibration, as suggested by Borrac-
cino et al. (2016). This increased uncertainty is due to the
large height span and associated wind shear within a single
range gate. During the campaign, the maximum elevation an-
gle was closer to 7◦, and hence the height range covered by
a single range gate is significantly smaller. Accordingly, the
actual uncertainty is expected to be smaller than that obtained
during the system verification.

A2 Beam positioning

Another uncertainty component is the lidar laser beam posi-
tioning, which describes the combined effect of the accuracy
of the scanning head in the vertical direction and the vertical
wind shear. Here we used scanning lidar precision as given

by the manufacturer and used a vertical power-law profile
with an exponent α = 0.14.

The error of the measurement height due to the curvature
of the Earth is considered negligible at the range distance of
the measurement location (1.5 km).

A3 Mounting error

The mounting error has been quantified by means of SSL.
This has been taken into account in the scanning trajectory
design to compensate for it. In this way we almost diminish
this error; however there is still a very small remaining error.

A4 Platform vibration

Height variations in the measurement are caused by orien-
tation changes in tilt and roll, due to platform vibration. An
analysis of these signals from the internal inclinometer has
been performed over the whole campaign. Finally, the effect
of wind shear has been evaluated based on an assumption of
a power-law profile with an exponent of α = 0.14.

A5 Wind field inhomogeneity

The effect of inhomogeneous flow, mainly caused by partial
wake effects, has been evaluated based on simulation results
from Lundquist et al. (2015). The value is based on the as-
sumption of a wake distance of nine rotor diameters down-
stream.

A6 Wind speed reconstruction

Additionally, as pointed out in Newsom et al. (2017) with
respect to the VAD method, deviations from the perfect si-
nusoidal occur due to spatial and temporal fluctuations in the
velocity field and instrumental errors, and in the context of
the VAD algorithm, any departure from the perfect sinusoidal
may be regarded as error. Due the lack of a proper physi-
cal set-up during this study, numerical simulations have been
performed to assess the robustness of the calculation chain
of the partial VAD. The results show an average of approx-
imately 3 % mean error due to wind field inhomogeneity on
our partial VAD procedure. This can be seen as a conserva-
tive estimation of uncertainty in the wind field reconstruc-
tion.

The simulations were based on synthetic fields with a de-
fined mean wind speed (U ) with superimposed Gaussian ran-
dom noise σ/U = 10%. The wind field was scanned with the
same geometry as our partial VAD and for all combinations
of parameters shown in Table A2.

The results in Fig. A1 show the root-mean-square error
(RMSE) of simulations against the reference mean wind
speed for 100 runs of each parameter combination. A depen-
dence of the wind field reconstruction on both the azimuth
opening angle of the scan trajectory and the wind speed can

https://doi.org/10.5194/wes-7-1241-2022 Wind Energ. Sci., 7, 1241–1262, 2022



1258 B. Cañadillas et al.: Offshore wind farm cluster wakes

Table A1. Summary of uncertainty components that contribute to the global uncertainty of the wind measurement with the scanning lidar
and analysis techniques used during this project.

Component Estimated value [%] Remark

Calibration (u1) 1.4–2.2 Conventional calibration as a vertical profiler

Beam positioning (u2) 0.1 Based on scan head accuracy

Mounting error (u3) < 0.1 Accuracy of SSL

Platform vibration (u4) 1.7 Conservative value from inclinometer variance
over the measurement period

Wind field inhomogeneity (u5) < 2.5 Conservative value applicable for situations in wake;
obtained from Lundquist et al. (2015)

Wind speed reconstruction (u6) < 3.0 Conservative value obtained from simulation of our partial VAD

Table A2. Parameter set-up for the VAD simulation.

Parameter Range Step

Wind speed (U ) [m s−1] [5, 30] 5
Wind direction [◦] [0, 360] 30
Scanning elevation [◦] [1, 9] 2
Gaussian noise (σ/U ) [%] 10 –

be observed. An average value was obtained based on the
dependencies and wind speed distribution.

Six sources of uncertainty have been identified that play
a role in the overall uncertainty of the lidar wind speed. As-
suming that these uncertainties are independent, they can be
combined in quadrature to yield

u2
lidar = u

2
1+ u

2
2+ u

2
3+ u

2
4+ u

2
5+ u

2
6, (A1)

and therefore the overall lidar uncertainty in wind speed
ranges between 4.4 % and 4.8 %, which is largely dominated
by the wind field inhomogeneity and wind speed reconstruc-
tion. It is worth noting that these values are very conservative
and are expected to be lower in the case of the wind-free sec-
tors.

Appendix B: Weibull probability density function of
wind speed scanning lidar per wind sector area

Figure B1 is an extension of Fig. 10 in the main text that
shows the probability density function of wind speed scan-
ning lidar per wind sector area using the largest free-wind
sector (related to region R5) as reference. The bars shown
have a width of 1 m s−1. The height of the bars corresponds
to the normalized density function, i.e., the frequency of the
measured values contained in a bar multiplied by the bar
width.

Wind Energ. Sci., 7, 1241–1262, 2022 https://doi.org/10.5194/wes-7-1241-2022
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Figure B1. Weibull probability density function (pdf) of wind speed scanning lidar per wind sector area. The sector R5 is used as a reference.

Code and data availability. The airborne data will be published
in PANGAEA after the end of the project X-Wakes. The WRF and
scanning lidar data will be available upon request after the end of the
project X-Wakes, and the mesoscale model itself is open source and
can be obtained from https://doi.org/10.5065/D6MK6B4K (NCAR
Users Page, 2021). Data from Figs. 12, 14 and 15 are avail-
able at https://doi.org/10.6084/m9.figshare.19747252.v1 (Cañadil-
las, 2022).
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Abstract. Our aim with this paper was the analysis of the influence of offshore cluster wakes on the power
of a far-distant wind farm. We measured cluster wakes with long-range Doppler light detection and ranging
(lidar) and satellite synthetic aperture radar (SAR) in different atmospheric stabilities and analysed their impact
on the 400 MW offshore wind farm Global Tech I in the German North Sea using supervisory control and
data acquisition (SCADA) power data. Our results showed clear wind speed deficits that can be related to the
wakes of wind farm clusters up to 55 km upstream in stable and weakly unstable stratified boundary layers
resulting in a clear reduction in power production. We discussed the influence of cluster wakes on the power
production of a far-distant wind farm, cluster wake characteristics and methods for cluster wake monitoring.
In conclusion, we proved the existence of wake shadowing effects with resulting power losses up to 55 km
downstream and encouraged further investigations on far-reaching wake shadowing effects for optimized areal
planning and reduced uncertainties in offshore wind power resource assessment.

1 Introduction

Wind energy utilization at sea is an increasingly important
part for the transition of the mainly fossil-based energy sys-
tem towards renewable electricity generation. By the end
of 2018 offshore wind turbines with a capacity of 6382 MW
were installed in German waters, 21 750 MW worldwide. A
massive expansion of offshore wind energy utilization is ex-
pected in many countries. Germany alone aims at an installed
capacity of 15 GW by the year 2030 (Mackensen, 2019).
Most of this capacity will be installed in the North Sea and
Baltic Sea mainly in large wind farm clusters. A wind farm
cluster typically consists of several wind farms in the direct
vicinity, often operated by different parties and featuring dif-
ferent wind turbine types and geometries. Here, we call a
large accumulation of more than a hundred wind turbines a
cluster.

Wind turbines extract energy from the atmosphere form-
ing regions of reduced wind speed, so called wakes, behind
them. Wakes of single wind turbines merge to a wind farm or

cluster wake (e.g. Nygaard, 2014). We use the term cluster
wake for the merged wakes of a large number of wind tur-
bines of either the same or different type with no individual
wind turbine wake identifiable anymore. Downstream tur-
bines within a wind farm (e.g. Barthelmie and Jensen, 2010)
and in neighbouring downstream clusters (e.g. Nygaard and
Hansen, 2016) experience reduced wind speeds and reduced
power generation caused by wake shadowing effects. With
a rising offshore wind energy utilization, cluster wake shad-
owing effects will occur to an increasing degree, leading to
power losses and uncertainties in offshore wind resource as-
sessment.

Wind turbine wakes were subject of intensive research
in the last decade. Wake measurements were mainly per-
formed using the remote-sensing technique Doppler lidar
(e.g. Aitken et al., 2014; Trabucchi et al., 2017; Bodini et al.,
2017; Fuertes et al., 2018; Beck and Kühn, 2019), power
analysis on the basis of SCADA data (e.g. Barthelmie and
Jensen, 2010) or Doppler radar (e.g. Hirth et al., 2014). Fur-
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thermore, several numerical studies investigated wind tur-
bine wakes using large eddy simulation (LES) (e.g. Church-
field et al., 2012; Abkar and Porté-Agel, 2015; Dörenkämper
et al., 2015b; Lignarolo et al., 2016; Vollmer et al., 2016).
In an unstable atmosphere, e.g. in cold air over warm wa-
ter, vertical turbulence leads to a well mixed boundary layer
and causes a faster wake recovery. In stable conditions, e.g.
in warm air over cold water, wake deficits can last far down-
stream. Hansen et al. (2011), Dörenkämper et al. (2015b) and
Lee et al. (2018) investigated wake recovery with respect to
atmospheric stability and found an increased length of wakes
in stable stratification. Optimized wind farm layouts on the
basis of the prevailing wind rose and stability distribution to
reduce wake effects are commonly used (e.g. Emeis, 2009;
Turner et al., 2014; Schmidt and Stoevesandt, 2015).

Cluster wakes are recently coming into the scientific fo-
cus with an increased offshore wind energy utilization. Due
to the large dimensions of cluster wakes experimental in-
vestigations have been made with measurement systems ca-
pable of covering large areas like satellite synthetic aper-
ture radar (SAR) (e.g. Hasager et al., 2015), research air-
craft (e.g. Platis et al., 2018) and Doppler radar (e.g. Ny-
gaard and Newcombe, 2018). Numerical studies were car-
ried out by implementing wind farms in mesoscale mod-
els (e.g. Fitch et al., 2012; Volker et al., 2015). Wakes of
large offshore wind farm clusters over distances of more
than 10 km were first observed using data from satellite SAR
(Christiansen and Hasager, 2005). Li and Lehner (2013) and
Hasager et al. (2015) analysed offshore wind farm wakes us-
ing SAR images and compared the long, visible wakes to
results of mesoscale models. Nygaard and Hansen (2016)
analysed the power production of an offshore wind farm be-
fore and after the commissioning of a wind farm located
3 km to the west on the basis of SCADA data and discov-
ered power losses caused by wakes of the upstream wind
farm in the first rows of the downstream wind farm. Ny-
gaard and Newcombe (2018) used dual Doppler wind radar
to measure the inflow and the wake of an offshore wind farm
and found wind speed deficits up to the maximal achievable
downstream distance of 17 km possible with the used setup.
They analysed a case with steady wind direction and speed
and observed the cluster wake for over 1 h; stability infor-
mation was not available. Platis et al. (2018) used in situ
measurements taken with a research aircraft at hub height
behind offshore wind farm clusters in the German North Sea
and identified wakes with lengths of up to 55 km under sta-
ble atmospheric conditions, up to 35 km in neutral conditions
and up to 10 km in unstable conditions. Siedersleben et al.
(2018b) used the same flight measurements as Platis et al.
(2018) to evaluate a wind farm parametrization (Fitch et al.,
2012) in the numerical Weather Research and Forecasting
model (WRF) that is well established in wind energy applica-
tions (e.g. Pryor et al., 2018b; Witha et al., 2019; Dörenkäm-
per et al., 2015a). Additionally they presented an analy-
sis of aircraft wake measurements in five different heights

5 km downwind of the cluster. The wake deficit existed in
all considered height levels, also 50 m above the upper tip
height of the rotor. Siedersleben et al. (2018a) investigated
the micro-meteorological consequences of cluster wakes due
to mixing effects in the atmosphere using the flight measure-
ments from Platis et al. (2018). Pryor et al. (2018a) eval-
uated the downstream impact of large onshore wind farms
in North America using the wind farm parametrization by
Fitch et al. (2012) in convection-permitting mesoscale WRF
simulations. Lundquist et al. (2019) analysed the physical,
economic and legal consequences of wake effects between
large onshore wind farms with sizes of more than a hundred
megawatt each.

Wind farm cluster wakes in the far field of more than
20 km downstream have not been measured over longer peri-
ods. Satellite SAR just offers the possibility to take snapshots
of the wind field. Doppler radar has been deployed on the
coast monitoring a nearshore wind farm (Nygaard and New-
combe, 2018) but not in an offshore wind farm to use the full
measurement range for wake analysis. Doppler lidar, which
successfully monitored wind turbine wakes, was considered
not to be able to achieve the measurement range needed to
investigate full cluster wakes. Furthermore, the influence of
cluster wakes on the power production of far downstream
wind farms has not been analysed. The influence of atmo-
spheric stability on the development and recovery of cluster
wakes has not been studied in detail.

The objective of this paper is to analyse whether offshore
cluster wakes have a significant and continuous influence on
the power generation of a far downstream wind farm and how
this influence depends on atmospheric stability. For this pur-
pose we investigated two exemplary cases of cluster wakes
approaching the 400 MW wind farm Global Tech I in the
North Sea during situations with different atmospheric sta-
bilities by means of four synchronized data sets, namely

1. large-area satellite SAR wind data,

2. continuous platform-based long-range Doppler lidar
wind monitoring,

3. operational data of the wind farm Global Tech I and

4. meteorological measurements for atmospheric stability
characterization.

We follow Platis et al. (2018) in their definition of the clus-
ter wake deficit as the difference in the wind speeds from the
manually selected wake region and a neighbouring free-flow
region since the inflow wind speed of the wake generating
cluster as reference is typically not known. Furthermore, re-
gional and temporal differences in the wind field distort a
comparison of the far-distant points in front of and far be-
hind a cluster. Therefore, the adjacent regions in and aside the
wakes are compared. Wake and free-flow regions are identi-
fied manually in this analysis.
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Figure 1. (a) Overview of the considered area in the southern North Sea with wind farms and clusters shown. (b) Close view on GT I
and neighbouring wind farm clusters. The position of the lidar in GT I on turbine GT58 (filled �) and the offshore substation (OSS) “Hohe
See” (×) and the transformer platform “BorWin gamma” (+) are marked; distances to upstream clusters are also shown. We measured wakes
of all clusters in (b) and exemplary present the wakes of the BorWin and the DolWin2 clusters in this work. Information on the wind farms
and full names are listed in Table 1.

The paper is structured as follows. Section 2 introduces
the experimental setup in the North Sea; measurements taken
with lidar, SAR and meteorological sensors; and data pro-
cessing. Section 3 presents two exemplary cluster wake cases
affecting the wind farm Global Tech I. In Sect. 4 we discuss
the influence of cluster wakes on the power production of a
far downstream wind farm as well as cluster wake charac-
teristics and methods for cluster wake monitoring. Section 5
concludes on the findings and closes the paper.

2 Methods

In this study different data sources have been used: meteo-
rological measurements, wind farm production data (super-
visory control and data acquisition, SCADA) and remote-
sensing data from a Doppler lidar (light detection and rang-
ing) measurement campaign, and satellite SAR (synthetic
aperture radar) data. A description of these data sources is
given in this section. Our measurement campaign started in
late July 2018 and was planned to last 1 year. The mea-
surements we present in this paper were taken on 11 Octo-
ber 2018 and 6 February 2019. All measurement data in this
study were recorded in Coordinated Universal Time (UTC).

2.1 Wind farms and SCADA data

As of early 2019, several offshore wind farms were installed
mainly in clusters in the German and Dutch North Sea. Fo-
cus of this work is on the effects on the 400 MW wind farm
Global Tech I (GT I), which is one of the world’s most dis-
tant offshore wind farms with a coastal distance of more than
100 km. We analyse the impact of two large wind farm clus-
ters, namely the 802 MW “BorWin” cluster located about

Figure 2. Layout of the wind farm Global Tech I with turbine num-
bers. The turbine GT58, where we positioned the lidar, is marked in
red (�). The achievable sector for lidar measurements is drawn.

25 km southwest and the 914 MW “DolWin2” cluster 55 km
southeast on the wind farm GT I.

Figure 1 gives an overview of the region around GT I while
Fig. 2 displays its layout.

All coordinates in maps we show in the following, except
Fig. 1, were transferred to the Gauss Krüger coordinate sys-
tem and the origin was shifted to the lidar position at tur-
bine GT58 in GT I (Fig. 2). Table 1 summarizes the main
characteristics of the wind farms and clusters in the region.
In the direct southwestern vicinity of GT I, the associated
wind farms Hohe See and Albatros were under construction
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Table 1. Overview of offshore wind farms considered in this work (as of June 2019). The wind farms Borkum Riffgrund 2 (Orsted, 2018)
and “Merkur Offshore” (Merkur Offshore, 2018) were in the commissioning phase and partly fed into the grid during our measurements;
therefore, they are marked with smaller symbols in the relevant plots in this paper. D: rotor diameter, hH: hub height, Pr: rated power per
turbine, No.: number of turbines per wind farm, 6Pr: rated power of wind farm. The numbers for the hub height are related to different
reference levels, namely lowest astronomical tide (LAT), mean sea level (MSL) or just “over water”. These differences are not further
considered here since the difference between LAT and MSL is typically around 2 m in the North Sea.

Name Short Turbine D hH Pr No. 6Pr
(m) (m) (MW) (MW)

Global Tech I GT I AD 5–116 116 92 5.0 80 400

BorWin Cluster (802 MW)
BARD Offshore 1 BO1 BARD 5.0 122 90 5.0 80 400
Veja Mate VM SWT-6.0-154 154 103 6.0 67 402

Gemini Cluster (600 MW)
Buitengaats BG SWT-4.0-130 130 89 4.0 75 300
Zee Energie ZE SWT-4.0-130 130 89 4.0 75 300

DolWin 1 Cluster (1416 MW)
Trianel Windpak Borkum TWB AD 5–116 116 92 5.0 40 200
alpha ventus av AD 5–116 116 90 5.0 6 30

5M 126 92 5.0 6 30
Borkum Riffgrund 1 BR1 SWT-4.0-120 120 87 4.0 78 312
Borkum Riffgrund 2 BR2 V164-8.0 164 111 8.0 56 448
Merkur Offshore MO Haliade 150-6 150 103 6.0 66 396

DolWin 2 Cluster (914 MW)
Nordsee One N1 6.2M-126 126 90 6.15 54 332
Gode Wind 1+ 2 GW SWT-6.0-154 154 110 6.0 97 582

during the period of our measurement campaign with several
transition pieces and a substation but no wind turbine tow-
ers installed. The first turbine was erected on 6 April 2019
(EnBW, 2019). The position of the Hohe See offshore substa-
tion (OSS) is marked in the following plots (×). The instal-
lation of the 900 MW high-voltage direct current (HVDC)
platform BorWin gamma in the southeast corner of Hohe See
was completed on 11 October 2018 (Petrofac, 2018); we also
mark its position (+).

For the wind farm GT I, 10 min averaged SCADA data
were available during the period of the measurements. Data
of turbines in normal operation were considered; turbines
with curtailed power below rated power were excluded from
the analysis based on a SCADA status flag, a curtailment sig-
nal and consideration of pitch angles. For the wind farms
BARD Offshore 1, Gode Wind 1+ 2 and Nordsee One we
obtained hourly production data from Fraunhofer ISE (2019)
and checked the operational status.

We analyse wind turbine power differences using the
z score

zPi =
Pi −Pup

σPup

(1)

with zPi being the difference in the ith turbine’s power Pi
and the mean power of the turbines in the first row facing the
wind direction (upstream turbines) Pup normalized with the

standard deviation of the power of the upstream turbines σPup

within the considered time span. Advection through the farm
is not considered. We use the upstream turbines to calculate
the z score instead of the turbines of the whole farm to avoid
distortion by inner-farm wake effects.

2.2 Lidar measurements

We used a scanning long-range Doppler lidar system of type
Leosphere Windcube 200S (serial no. WLS200S-024) in this
study. The lidar system emits laser pulses into the atmo-
sphere and analyses the light backscattered by aerosols for
a Doppler shift proportional to the radial wind velocity in
beam direction vr. The lidar is able to process wind speed in-
formation in> 200 different ranges on the beam called range
gates. For each range gate, the radial wind speed vr and the
carrier-to-noise ratio (CNR) as a measure of the signal qual-
ity are stored. The lidar’s scanner is able to point the beam
in any desired direction in the hemisphere above and partly
below the device.

We installed the lidar system on the transition piece (TP)
of wind turbine GT58 in GT I (filled � in Figs. 1
and 2). The height of its scanner was approximately
24.6 m a.m.s.l. (above mean sea level), 67.0 m below hub
height and 9.0 m below lower blade tip height of the turbine.
Figure 3 displays a picture of the lidar installed in GT I.
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Table 2. Overview of the different settings for the lidar plan position indicator (PPI) scans. Both scenarios covered different sectors of 150◦

width. Range gates are listed as minimal range : spacing :maximal range. Range gates are also referred to as “measurement points” in the
following.

Scenario Pulse Acquisition ϕ̇ Scan Range gates (m)
length time (◦ s−1) duration
(ns) (s) (s)

A 400 8.0 0.25 600 1000 : 50 : 12000
B 400 2.0 1.0 150 500 : 35 : 8000

Figure 3. Lidar system Windcube 200S on the transition piece of
wind turbine GT58 in the offshore wind farm Global Tech I. On
the right side of the image the tower of the turbine is visible while
turbine GT51 northwest of GT58 can be seen in the background
(cf. GT I layout in Fig. 2) (Stephan Voß, ForWind).

The lidar performed horizontal plan position indica-
tor (PPI) scans (elevation angle ϕ was 0◦) with continuous
scanner movement in different azimuthal sectors of 150◦

width upstream with two different settings, A and B, as listed
in Table 2. We started with the slower scenario A aiming for
a high measurement range. Later we optimized the measure-
ments using scenario B, being 4 times faster and achieving
similar ranges. In both scenarios the laser beam is scanned
over an angle of 2◦ per measurement leading to spatial aver-
aging perpendicular to the line of sight direction. After per-
forming a scan, the lidar needs a few seconds to reset and
start the next scan. Every few hours it performs a homing
procedure of the scanner to assure precise orientation. The
laser pulse length used in both scenarios was 400 ns, lead-
ing to a probe volume of approximately 70 m in the beam
direction. The range gate spacing is listed in Table 2.

The offset in the azimuthal direction between geographic
north and the lidar’s north was corrected by scanning distant
wind turbines in GT I with known positions (“hard target-

ing”). The resulting error in the azimuthal orientation 1ϕ
was smaller than 0.1◦ and is therefore neglected.

The lidar was well aligned on the pitch and roll axis; errors
were checked using the method of sea surface levelling (Rott
et al., 2017). The resulting maximal error in the elevation1ϑ
was less than 0.1◦. An additional error in the elevation angle
of the lidar measurement occurs from a small movement of
the TP due to the thrust on the rotor with a maximum of 0.1◦.

When regarding the height of the measurement locations,
the curvature of the earth must be taken into account for the
ranges achieved. The error introduced raises quadratically
with range and reaches 1h8 = 5.02 m for a distance of 8 km
and of 1h10 = 7.85 m for a distance of 10 km. The measure-
ment errors we describe here can be neglected for the mainly
qualitative analysis in this work.

2.3 Lidar data processing

Lidar scans were individually filtered on CNR minimal and
maximal thresholds, a maximum range, and a minimal data
density in the vr–CNR plane (similar to Beck and Kühn,
2017). For each PPI scan, the mean wind direction was de-
termined by fitting a cosine function to all radial speeds vr of
the scan over their azimuth angles ϕ. All vr were then trans-
formed back to the absolute wind speed va in mean wind di-
rection assuming the perpendicular wind component to van-
ish using

va = vr/cos(ϕdiff) (2)

with ϕdiff being the difference angle between the beam direc-
tion and the mean wind direction. Sectors with measurement
ranges almost perpendicular to the wind direction (|ϕdiff|>

75◦) were excluded from the analysis because of an increas-
ing error due to an overestimation of flow components per-
pendicular to the wind direction. We plot single lidar scans
on their original polar grid. To obtain averaged lidar wind
fields, we transferred the va-lidar data of each regarded scan
to a Cartesian grid with a resolution of 50 m× 50 m, triangu-
lating the data points and on each triangle performing linear
barycentric interpolation to the grid points. We then calcu-
lated the cubic (or power) average on each grid point. Due
to slightly changing wind directions in the averaging inter-
val, points at the border of the scans were just included in the
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Table 3. Classification of atmospheric stability as suggested by Sor-
bjan and Grachev (2010).

Stability category Range

Very stable 0.6< ζ < 2.0
Stable 0.2< ζ < 0.6
Weakly stable 0.02< ζ < 0.2
Near neutral −0.02< ζ < 0.02
Weakly unstable −0.2< ζ <−0.02
Unstable −0.6< ζ <−0.2
Very unstable −2.0< ζ <−0.6

further analysis if no scan (scenario A) or less than 10 scans
(scenario B) did not contribute at the grid point.

2.4 Atmospheric stability and meteorological data

Meteorological measurements of atmospheric stability are
uncommon in offshore wind farms. Different methods for
the derivation of stability exist (see Rodrigo et al., 2015 for
an overview). We applied the bulk Richardson method from
profile measurements according to Emeis (2018) based on
the tropical observations of Grachev and Fairall (1997). We
used the wind speed vTP, the temperature TTP on the height of
the transition piece zTP, and the difference in the virtual po-
tential temperatures at the height of the TP and at sea level,
12v =2v,TP−2v,SST (see Appendix A), to derive the di-
mensionless bulk Richardson number

Rib =
g

2v,TP

zTP12v

v2
TP

, (3)

where g is the gravity acceleration. The dimensionless sta-
bility parameter,

ζ =

{ 10Rib
1−5Rib

Rib > 0,
10Rib Rib ≤ 0,

(4)

and the stability classification in Table 3 were chosen for sta-
bility categorization.

To be able to estimate ζ , we operated sensors for air pres-
sure (Vaisala PTB330) as well as temperature and relative hu-
midity (Vaisala HMP155) on the TP of turbine GT58. In one
case (see Sect. 3.2.1) we used meteorological measurements
from the nacelle of turbine GT58 provided by the wind farm
operator as a second source of data to derive the stability pa-
rameter at height of the nacelle ζnac using the same method-
ology as described above. A buoy for the measurement of
the sea surface temperature TSST was available from 9 Au-
gust 2018 until 31 January 2019. We compared the measure-
ments with the OSTIA data set (Donlon et al., 2012), both re-
sampled to a 30 min interval (mean values for the buoy data,
linear interpolation for the daily available OSTIA data set),
and found a mean difference of 0.19 K. Since the buoy was
not available during the whole lidar measurement campaign,

we use TSST from the OSTIA data set to derive ζ . The wind
speed on the height of the TP, vTP, for the purpose of atmo-
spheric stability analysis was calculated from horizontal lidar
PPI scans as described in Sect. 2.3 using data with a mea-
surement range less than 3000 m. These measurements took
place within the approaching cluster wakes, when present.
This influences the calculation of the stability parameter but
we see the wake as part of the inflow and do not try to correct
for it. We averaged meteorological measurements to 30 min
intervals. Table 4 shows an overview of the available meteo-
rological data.

For a comparison of the potential power Ppot in the wind
with the power harvested by free-flow turbines, we had to
transfer wind speeds from measurement heights (zSAR =

10 m, zTP = 24.6 m) to hub height zhub = 91.6 m. Following
Emeis (2018), we used the logarithmic wind profile

u(z)=
u∗

κ
·

(
ln
z

z0
−9m(z/L)

)
(5)

with a correction function 9m(z/L) to account for the at-
mospheric stability to calculate the vertical wind profile.
We used mesoscale data with a setup very similar to the
production runs of the New European Wind Atlas (NEWA;
see Witha et al., 2019; NEWA, 2019) internally deriving the
roughness length z0 using Charnock’s relation. We obtained
the Obukhov length L from the stability parameter ζ =
zTP/L. The von Kármán constant reads as κ = 0.4. The fric-
tion velocity u∗ was then calculated for the given pair of wind
speed and height, e.g. zTP and uTP from Eq. (5). The wind
speed on hub height was afterwards converted to the theoret-
ical potential power Ppot using a power curve Pest(v)= c ·v3

with the constant c derived from power data in the partial
load range. We do not curtail Ppot at rated wind speeds al-
lowing it to be larger than rated power.

2.5 SAR wind data

Satellite SAR remotely measures the roughness of the sea
surface. Using a geophysical model to estimate wind direc-
tion, wind speeds over the ocean can be derived. In this work,
we use publicly available already processed wind data from
the Copernicus SAR satellite Sentinel-1A. The algorithm for
wind field processing is described in Mouche (2011), an
overview of its performance is given in ESA (2019) and the
data product including quality flags is described in Vincent
et al. (2019). Wind data at 10 m height are processed on a
grid with a spatial resolution of 1km×1 km. Wind speed es-
timates are in range from 0 to 25 m s−1 with a root mean
square error (RMSE) smaller than 2.0 m s−1 and wind direc-
tion estimates have an RMSE below 30◦. The spatial cov-
erage of the SAR images and the processed wind fields is
170 km× 80 km minimum with a revisit time of the order
of days. A quality flag for the wind estimate (owiWindQual-
ity, 0: high quality, 1: medium quality, 2: low quality, 3: bad
quality; see Vincent et al., 2019) is provided within the data
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Table 4. Overview of the available meteorological quantities to derive the stability parameter ζ . Availabilities disregard shorter data gaps. If
no end time is stated, measurements are ongoing with date of 1 August 2019. Additional data from mesoscale simulations similar to the New
European Wind Atlas (NEWA) data set were available but not listed in this table.

Quantity Symbol Sensor or source Height Availability period

Air temperature TTP HMP155 zTP = 24.6 m a.m.s.l. 23 Jul 2018
Air humidity RHTP HMP155 zTP = 24.6 m a.m.s.l. 23 Jul 2018
Air pressure PTP PTB330 zTP = 24.6 m a.m.s.l. 23 Jul 2018
Wind speed vTP,lidar lidar PPI scans zTP = 24.6 m a.m.s.l. 17 Aug 2018 (dep. on scan scenario)
Sea surface temperature TSST,buoy buoy next to GT58 sea surface 9 Aug 2018–31 Jan 2019
Sea surface temperature TSST,OSTIA OSTIA data set sea surface 2018–2019

product. We use data with a quality flag ≤ 2. For the calcula-
tion of the potential power on hub height (see Sect. 2.4), we
added constant wind speed values within the measurement
accuracy to the SAR wind data to match the actual power
production.

3 Results

In this section we present an analysis of wake situations of
the BorWin cluster on 6 February 2019 and of the DolWin2
cluster on 11 October 2018 based on Sentinel-1 SAR wind
data, lidar measurements and SCADA power data of the wind
farm GT I.

3.1 BorWin cluster wake on 6 February 2019

The BorWin cluster is located approximately 24 km upwind
of GT I in southwesterly direction. We measured wakes from
the cluster approaching GT I in stable stratified situations
during our measurement campaign. Here we present a stably
stratified situation in late winter 2018/2019 with low varia-
tion in the wind direction allowing us to analyse lidar scans
of the same situation over a period of a couple of hours.

3.1.1 Meteorological conditions

In Fig. 4 we plot the measured wind speed and direction,
air pressure, temperature and humidity, and the sea surface
temperature from the OSTIA data set and the derived sta-
bility parameter ζ during 6 February 2019. On that day the
frontal system of a cyclone southwest of Iceland crossed the
German Bight. The warm front passed GT I in the morning,
bringing air temperatures of about 6.9 ◦C in the warm sector
over the 6.1 ◦C cold sea stabilizing the boundary layer. With
decreasing humidity and disappearing fog, good lidar avail-
ability was achieved starting at approximately 10:00 UTC
(short humid or foggy period of bad measurements around
12:00 UTC) with clear wakes of the BorWin cluster visible in
the lidar scans. In the afternoon we choose a period with rel-
atively constant wind direction from 13:35 to 16:12 UTC for
analysing the averaged wake effects over a longer period of

about 2.5 h. The period with stable stratification ended with
the passage of the cold front at approximately 17:15 UTC.

3.1.2 SAR wind data

Figure 5 displays the analysis of a wind field derived from the
measurement of the Copernicus satellite Sentinel-1A, which
passed the German Bight at the end of the stable stratified
period on 6 February 2019 as an overview of the wind field
in the region around GT I. The wake of the BorWin cluster is
clearly visible and extends approximately 24 km downstream
until it partially hits the wind farm GT I. Further downstream
of GT I an even higher wake deficit of the merged wakes of
the BorWin cluster and GT I can be observed. The virtual
wake cut (Fig. 5c) reveals a sharp transition from higher to
lower wind speeds at the edge of the wake; a deficit in the
SAR wind speed of 0.9 m s−1 is observed. Since the wake
just partially hits GT I, it separates the farm into two regions:
one in free flow and one affected by the wake. The turbines
in free flow in the northwestern and southern corner of GT I
produce significantly more power (> 2σP) than the first up-
stream row of turbines produce on average (Fig. 5b). We con-
firm this result with the comparison of the 10 min power of
the upstream-row turbines with the potential power on hub
height derived from the inflow wind speed (Fig. 5d) which
agrees well. Within the wake-affected region in GT I, typical
inner-farm wake effects are visible through a power decrease
in downstream direction (e.g. Barthelmie and Jensen, 2010,
Fig. 5b) which are different in the northern and southern parts
of the farm due to different turbine spacings in wind direc-
tion.

3.1.3 Lidar wind fields

In Fig. 6 we present the analysis of a single lidar scan of
the inflow of GT I. We observe a clear edge between high
wind speeds in the undisturbed flow and lower wind speeds
in the wake of the BorWin cluster, causing a clear separation
of power production in the wind farm GT I in a free-flow
and a wake region (Fig. 6b). The virtual wake cut in Fig. 6c
illustrates the sharp transition region of just a few hundred
metres width and highlights the wake deficit of 3.9 m s−1 or
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Figure 4. Meteorological data at the lidar location on the height of the TP (24.6 m a.m.s.l.) of turbine GT58 on 6 February 2019. Top
to bottom: wind direction φTP,lidar, wind speed vTP,lidar, air pressure PTP, air and sea surface temperature TTP and TSST,OSTIA, relative
humidity RHTP, and the dimensionless stability parameter ζTP. Measurement times are marked as follows: vertical dashed line represents
the SAR image (Fig. 5), vertical solid line represents the single lidar scan (Fig. 6), and shaded interval represents the averaged lidar wind
field (Fig. 7). Mean wind speed and direction in the averaged lidar interval are marked by red horizontal dotted lines. Dashed lines in wind
speed and direction indicate moist or foggy periods with reduced lidar data availability.

40.5 %. The potential power on hub height derived from the
inflow wind speed corresponds well with the power gener-
ated by the upstream row of turbines in the regarded 10 min
interval (Fig. 6d). The two northerly upstream turbines are
in the region of free flow and produce, with > 2σP, signifi-
cantly more power than the turbines being influenced by the
BorWin wake.

In Fig. 7 we present an averaged lidar wind field calculated
from 60 consecutive scans like the one in Fig. 6 in a period
of approximately 157 min with relatively constant wind di-
rection (see shaded areas in Fig. 4) to demonstrate the steadi-
ness of the BorWin wake and its influence on power pro-
duction. The wind speed along the virtual cut through the
wind field in Fig. 7c reveals a strong average wake deficit of
2.3 m s−1, equivalent to 24.7 %. The transition region from
wake flow to free flow is about 3 km wide resulting from the
small changes in wind direction and thus the slightly differ-
ent positions of the wake during the averaging time. Aside
from the clear visible northerly edge of the BorWin wake,
the southerly edge can be observed in the southerly corner
of the lidar wind field and correspondingly in the wake cut
(Fig. 7c). Wind speeds recover on both sides of the wake to
similar values just above 9 m s−1. The average power of the
GT I turbines reveals a clear reduction in the wake-affected
region (Fig. 7b). The turbines in free flow produce (> 2σP)
above the average. Comparing the potential power on hub

height along the wake cut together with the average power
of the upstream-row turbines (Fig. 7d), we find a slight over-
estimation of the potential power in the wake region and an
overestimated increase in the turbine power in the transition
region. The position of the transition onset in the estimated
power from the wind field and the measured power from the
turbines agree well.

3.2 DolWin2 cluster wake on 11 October 2018

The DolWin2 cluster is approximately 55 km upstream of
GT I in southeasterly direction. We regularly have indica-
tions in our measurements for wakes from the cluster ap-
proaching GT I in stably stratified situations. Here we present
a situation in autumn 2018 with a change of stability over the
course of the day. We present a single lidar scan and an av-
eraged lidar wind field from a period with low variation in
the wind direction in stable stratification. A complementary
SAR scan from the morning of the day during weakly unsta-
ble stratification is available as well and analysed here.

3.2.1 Meteorological conditions

In Fig. 8 we plot the measured meteorological quantities
on 11 October 2018. Since the lidar for measurements of
wind speed and direction and the data of air temperature,
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Figure 5. Sentinel-1A Ocean Wind Field (Copernicus Sentinel data (2019)), measurement taken 6 February 2019 17:11:42 UTC.
(a) Overview of the BorWin cluster and Global Tech I. (b) Close look on the BorWin wake hitting GT I. The solid line marks a virtual
wake cut 2000 m upstream of turbine GT58 on which the wind field is evaluated. Marked distances correspond to the x axis of (c) and (d).
The z score of the turbine power zPi (see Eq. 1) is shown in greyscale for the relevant 10 min period (17:10–17:20 UTC); markers scale
with z− zmin. Numbers of upstream turbines to calculate the z score are 1, 9, 16, 23, 30, 37, 44, 51, 58, 64, 69, 73, 76, 79, and 80. Turbines
not operating the full period or operating at curtailed power are excluded and marked (Y -shaped marker). (c) Wind speeds along the wake
cut from (b). Wake and the free stream are shaded (regions selected manually). (d) Potential power on hub height along the wake cut (solid
line) together with the power produced by the upstream turbines in GT I within the regarded 10 min interval with turbine positions projected
to the wake cut. A constant value of 1.0 m s−1 was added to vSAR,10 m for the calculation.

pressure and humidity at TP height were not available dur-
ing the whole day we added the mesoscale data from the
New European Wind Atlas (NEWA) and measurements from
the nacelle of turbine GT58 to the plots. A cyclone south-
west of Iceland and a strong high-pressure area over Rus-
sia dominated the weather during the day. The North Sea
was positioned in the warm sector of the cyclone between
the cold front over the UK and the warm front spanning
from Iceland to Norway. Southeasterly winds prevailed in
the southern North Sea raising the air temperature in GT I
between 12:00 and 14:00 UTC above the temperature of the
still quite warm North Sea (approximately 16 ◦C) stabiliz-
ing the boundary layer. In the morning a shallow (weakly)
unstable boundary layer of some hundred metres height oc-
curred because the surface layer over land cooled down dur-
ing the night to temperatures below sea surface temperature
and moved with the prevailing flow over the sea. Aside from
the stability obtained from NEWA (weakly unstable) and the
nacelle measurements (unstable), this finding is further sup-
ported by temperature profiles sounded with radiosondes at
the stations in Bergen (no. 10238) and Ekofisk (no. 1400)

the same day. A weak inversion with temperatures of ap-
proximately 13.5 ◦C up to 300 m height appears in the pro-
file at Bergen, 04:00 UTC, with a stronger temperature in-
version above. At the Ekofisk site the temperature profile
at 11:00 UTC shows a similar behaviour with the upper in-
version being less pronounced and sunken to approximately
230 m height. This allows for dry adiabatic convection up to
heights between 200 and 300 m for the prevailing sea surface
temperature.

We found a good general agreement between the NEWA
data and the values measured in the wind farm. Especially the
derived stability parameter ζ agrees well. For the differences
in the other quantities the different reference heights have to
be considered. Half-hourly values of wind speed and direc-
tion from the NEWA data are not expected to cover small-
scale fluctuations and to perfectly match a local measure-
ment.
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Figure 6. Lidar scan (scenario B from Table 2) on 6 February 2019 16:58–17:01 UTC: (a) overview of the situation in the German Bight
with lines parallel to the wind direction retrieved from the lidar scan from the corners of the upstream wind farm cluster BorWin. Lidar wind
speed is colour coded (left colour bar). (b) Close view of the lidar wind field and the wind farm GT I. The z score of the not curtailed wind
turbines’ power in the current 10 min interval (16:50–17:00 UTC) is in greyscale (right colour bar), curtailed or non-operating turbines are
marked (Y -shaped marker). Markers scale with z− zmin. Turbine numbers to calculate the z score as in Fig. 5. The substation Hohe See (×)
is marked. The solid line marks a virtual wake cut 3000 m upstream of turbine GT58 on which the wind field is evaluated and drawn in (c).
Areas of wake and free stream are shaded manually, the resulting wake deficit is stated. (d) Available power on hub height along the wake
cut from (b) together with the power achieved from the upstream turbines in GT I with their positions projected to the wake cut.

3.2.2 SAR wind data

Figure 9a shows the wind field from the Copernicus satellite
Sentinel-1A, which passed the German Bight in the morn-
ing of 11 October 2018, as an overview of the wind field
in the region between GT I and the DolWin2 cluster. The
stratification during the SAR snapshot was weakly unstable.
Wakes of the Gemini, DolWin1 and DolWin2 clusters with
lengths of at least 20, 40 and 55 km, respectively, are clearly
visible. The wake originating in the DolWin2 cluster splits
into two parts generated by “Gode Wind 1+ 2” (GW) and
Nordsee One (N1); see Fig. 1. The GW wake extends far
downstream until it hits the wind farm GT I after approx-
imately 55 km. Further downstream a merged wake of the
DolWin2 cluster and GT I can be observed extending out of
the visible range after approximately 30 km. All wakes have
the approximately same width as the generating cluster and
become narrower downstream.

The virtual wake cut 9000 m upstream of GT58 reveals
regions of different influence (Fig. 9c). On the southwest
side of the cut we see a region of undisturbed flow (d ≈
−15 km, d is the distance on the wake cut from Fig. 9c) with

wind speeds decreasing towards northeast. The deficit be-
tween −5 km< d < 0 km originates in the wake of the wind
farm N1 followed by the stronger deficit at 0 km< d < 10 km
of the GW wind farm. This wake deficit centrally hits GT I
and affects its power production. Further east the wind speed
remains approximately constant until it rises from d > 20 km
due to regional differences in the wind field. Regarding the
marked wake and free-flow regions in Fig. 9c, we observe a
wake deficit of 0.6 m s−1 or 7.2 % in the SAR wind speed for
the DolWin2 wake in 10 m height.

Differently from the wake situation of the BorWin clus-
ter (Sect. 3.1), the wind farm GT I is affected by the Dol-
Win wake centrally; therefore, we do not observe separated
regions of power production within the farm. Nevertheless,
the outer turbines on the western and northeastern corner
of the wind farm produce significantly more power (2.6 and
1.7σP above average) than the average of the upstream row
(Fig. 9b). Looking at the potential power on hub height cal-
culated from the virtual wake cut (Fig. 9d), we find the in-
creased power to result from the higher wind speeds at the
sides of the DolWin2 wake deficit. This highlights the effect
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Figure 7. As in Fig. 6 but averaged over 60 consecutive lidar scans (scenario B) corresponding to a period of 157 min (13:35–16:12 UTC);
power data averaged over 170 min (13:30–16:20 UTC). Red lines in (a) indicate minimal and maximal wind directions within the averaging
interval.

of the wake on the power production even in weakly unstable
conditions.

3.2.3 Lidar wind fields

In Fig. 10 we show a single lidar scan of the flow southwest
of GT I. The stratification during the scan was stable (Fig. 8).
We do not observe a sharp transition from wake to free-flow
regions like for the BorWin wake (Fig. 6) but a steady de-
crease in wind speeds southwest to northeast, similar to the
DolWin2 wake situation we found in the SAR data from
the same morning in weakly unstable stratification (Fig. 9).
Three more wakes appear in the wind field: one originating
from a ship close to GT I, another one from the OSS Hohe
See (×) and the third from the platform BorWin gamma (+).
The latter wake extends at least 9 km downstream.

The virtual wake cut (Fig. 10c) highlights the differ-
ent flow regions with lower wind speeds near GT I. The
Hohe See OSS wake is located at d ≈−4 km and the
BorWin gamma wake between −6 km< d <−5.5 km. The
wake deficit of the DolWin2 cluster amounts to 3.3 m s−1

or 26.4 %. Comparing the potential power in the wind field
with the power produced by the turbines of the upstream row,
we find most turbines producing approximately rated power
(Fig. 10d). The potential power in the west of the wind farm
is slightly lower than the power of the upstream turbines.
Even though during this lidar scan with high wind speeds the

wind farm’s power is not influenced by the DolWin2 wake
due to the turbines curtailing power production above rated
speed, we find clear indications for wake effects with reduced
wind speeds at the position of GT I 55 km downstream the
DolWin2 cluster.

Figure 11 highlights the steadiness of the DolWin2 wake
situation on 11 October 2018. We averaged 16 consecutive
lidar scans in a period of approximately 162 min (15:44 to
18:26 UTC; cf. shaded interval in Fig. 8) with a relatively
constant wind direction. As for the single lidar scan we ob-
serve the same behaviour in the wind field with a wind speed
decreasing along the virtual wake cut from southwest to
northeast. The wake deficits of the Hohe See OSS and Bor-
Win gamma are clearly visible in the averaged wind field
(Fig. 11c). The relative wake deficit of the DolWin2 cluster is
similar for the single and the averaged lidar scans (Fig. 10).
Since the average wind speed within the averaging period is
smaller than that at the time of the single scan (Fig. 8), the
absolute deficit is smaller, too. The course of the potential
power in the wind field (Fig. 11d) is continued by the power
of the upstream-rows turbines. The wake effect of the Dol-
Win2 cluster on the power of GT I is evident. The potential
power in the wind about 4 km southwest of the wind farm
reaches rated wind speed.
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Figure 8. Meteorological data at the lidar location (turbine GT58) on 11 October 2018. Top to bottom: wind direction φTP,lidar, wind
speed vTP,lidar, air pressure PTP, air temperature TTP, sea surface temperatures TSST,OSTIA and TSST,buoy, relative humidity RHTP, and the
dimensionless stability parameter ζTP on the height of the TP of GT58 (24.6 m a.m.s.l.). Since the measurements are not available during
the whole day, we added the 10 m wind speed v10 m,NEWA and direction φ10 m,NEWA, 2 and 50 m temperature T2 m,NEWA and T50 m,NEWA
and the stability parameter ζNEWA from the NEWA data set (see Witha et al., 2019) as well as the temperature T92 m,nacelle and the derived
stability parameter ζ92 m,nacelle on hub height of turbine GT58. Measurement times are marked as follows: vertical dashed line represents
the SAR image (Fig. 9), vertical solid line represents the single lidar scan (Fig. 10), and shaded interval represents the averaged lidar wind
field (Fig. 11). Mean wind speed and direction in the averaged lidar interval are marked by red horizontal dotted lines.

4 Discussion

We found evidence of cluster wakes in the form of wind
speed deficits with clear transition regions between slower
wake flow and faster undisturbed flow in many lidar scans
upstream of GT I for all neighbouring wind farm clusters
in southeasterly to westerly wind directions, namely the
DolWin2 (approximately 55 km), DolWin1 (approximately
42 km), Gemini (approximately 54 km) and BorWin (approx-
imately 24 km) clusters. In some of the cases with avail-
able large-area SAR wind data, these alternative measure-
ments supported the lidar cluster wake measurements. Power
deficits in the wind farm agree with the wake regions found
in lidar and SAR data. In this paper we present two exem-
plary wake cases: one for the BorWin cluster 24 km upstream
and one for the DolWin2 cluster 55 km upstream, and both
wake effects occurred steadily over more than 2.5 h and influ-
enced the power production of GT I. We found cluster wakes
mainly for positive values of the stability parameter ζ (sta-
ble stratification) but also for ζ slightly below zero (weakly
unstable stratification, shallow boundary layer).

4.1 Influence of cluster wakes on power production of
far downstream wind farms

The effect of cluster wakes on the operation of far down-
stream wind farms has not been investigated before. Nygaard
and Hansen (2016) report about short-distance effects in the
power production of wind farms in the direct vicinity (3.3 km
gap) based on SCADA analysis. Nygaard and Newcombe
(2018) analyse a cluster wake at hub height up to 17 km
downstream a wind farm with dual Doppler radar from the
coast. Platis et al. (2018) find long-reaching wake effects
(wind speed difference of more than 0.1 m s−1 considered
wakes) up to 55 km downstream in flight measurements but
could not analyse their impact on distant wind farms. Here,
our findings from combined satellite SAR and lidar measure-
ments of cluster wakes existing over distances of up to 55 km
downstream agree with the observation of Platis et al. (2018).
Additionally, we confirm the assumption of negative effects
of cluster wakes on the power production of a far downstream
wind farm.

The evidence of the wake influence on wind farm power is
obvious for the BorWin case where we find a clear distinc-
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Figure 9. Sentinel-1A Ocean Wind Field (Copernicus Sentinel data (2018)); measurement taken 11 October 2018 05:44:10 UTC. We show
power data of the upstream turbines in the interval 05:40–05:50 UTC, as in Fig. 5; positions of downstream turbines are marked (hexagon).
In (d) we added an offset of 2.0 m s−1 to the SAR wind speeds on the virtual wake cut 9000 m upstream of GT58 before we transferred them
to hub height and calculated the potential power. Numbers of considered upstream turbines to calculate the z score are 8, 15, 22, 29, 36, 43,
50, 68, 72, 80, 79, 76, 73, 64, 58, and 51.

tion of wake and free stream in the lidar and SAR wind mea-
surements agreeing with the findings of Platis et al. (2018),
who present a wake situation with a high wind speed gradi-
ent at one side of the cluster wake. In the BorWin case this
edge of the wake continues in a separation of the wind farm
turbines’ power production (Figs. 5–7). In the DolWin2 case
we could argue whether the higher power of the outer tur-
bines (Fig. 9b) result from flow effects at the farm corners
leading to higher turbine efficiencies as found by Barthelmie
and Jensen (2010) but the comparison of the potential power
in the inflow with the turbine power (Fig. 9d) reveals a good
agreement, suggesting that at least most of the effect origi-
nates in the wake-affected inflow conditions with the highest
deficit reducing the power of the central turbines, while the
outer turbines profit from higher wind speeds at the sides of
the wake.

Wakes are expected to exist far downstream in stable strat-
ifications but to recover much earlier in the unstable case.
Platis et al. (2018) report about 41 measurement flights
(24× stable, 12× unstable, 5× neutral stratification) and
find evidence for cluster wakes in stable boundary layers
55 km downstream, while the furthest evidence in an unsta-
ble case is found 10 km downstream. In our lidar measure-
ments we find the most pronounced cluster wakes in stable
situations supporting these findings. But we have evidence

for far-reaching wakes in neutral and weakly unstable con-
ditions, too. All lidar measurements we present in this work
were measured in stable situations but the SAR image of the
DolWin2 case (Fig. 9) was taken earlier the same day in a
shallow, weakly unstable boundary layer with cluster wakes
appearing downstream of many clusters. Vertical momen-
tum transport was possible in lower heights but was hindered
by an inversion appearing at approximately 200 to 300 m.
The rotor area of the GT I turbines extends up to 150 m
height. The DolWin2 wake reaches 55 km downstream un-
til it hits the wind farm GT I where the power production of
the upstream-row turbines follows the potential power cal-
culated from the inflow SAR wind. This finding proves the
existence of long-reaching cluster wakes and their influence
on power production of far downstream wind farms even in
cases with weakly unstable stratification. In future work we
plan to publish an analysis of the whole data set of the, at the
time of writing, still ongoing lidar measurement campaign
focusing on wakes in unstable conditions. Nevertheless, the
DolWin2 case highlights the necessity to carefully character-
ize the boundary layer for stability analysis, since the unsta-
ble stratified layer in the boundary layer could be thin and
limited by an inversion just above temperature measurement
height and still within the rotor area.
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Figure 10. Lidar measurement (scenario A) of the wake of the DolWin2 cluster on 11 October 2018 17:16–17:20 UTC; power data of
upstream turbines 17:10–17:20 UTC, as in Fig. 6. Downstream turbine positions marked (hexagon). Turbine numbers to calculate the z score
are 8, 15, 22, 29, 36, 43, 50, 68, 72, 78, and 80. Additionally, we marked the converter platform BorWin gamma (+).

Figure 11. Wake of the DolWin2 cluster on 11 October 2018 as in Fig. 6 but averaged over 16 consecutive lidar scans (scan scenario A) in
a period of 162 min (15:44–18:26 UTC); power data of upstream turbines averaged over 170 min (15:40–18:30 UTC); downstream turbines
marked (hexagon). Turbine numbers to calculate the z score are 8, 15, 22, 29, 36, 43, 50, 68, 72, 78, 80, and 79.
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In addition to the influence of a cluster wake on the wind
farm GT I, we still observe inner-farm wake effects (Figs. 5
and 6) with decreasing power production downstream. Clus-
ter wake and wind turbine wakes in the farm overlap. This
supports the assumption of the cluster wake being a region
of reduced wind speeds with no special characteristics of
the original single turbine wakes remaining. We do not per-
form turbulence analysis comparing cluster wake turbulence
to free-flow turbulence in this study. Platis et al. (2018) report
a slender wake of increased turbulent kinetic energy (TKE)
originating in one corner of the cluster. It was aligned with a
stronger horizontal wind speed gradient at the border of the
wake. The TKE was reduced in the wake deficit due to the
lower wind speeds.

The influence of cluster wakes on the current power pro-
duction of downstream wind farms could not easily be related
to their influence on the annual energy production (AEP). To
achieve this, a detailed assessment of the total influence dur-
ing at least 1 year has to be conducted using, for example,
validated wind farm parameterizations in mesoscale mod-
els. The local distribution of wind speed, direction and at-
mospheric stability has to be considered as well as farm and
cluster geometries.

In many wake cases the wind speed in the wake deficit
still exceeds rated wind speed of the downstream turbines
without an effect on their power production. If the upstream
cluster’s turbines operate in wind speeds above rated speed,
their thrust coefficient, cT, decreases additionally, resulting
in reduced wake deficits. We expect the total influence of
cluster wakes on AEP to be smaller than wake effects from
neighbouring wind farms (see Nygaard and Hansen, 2016)
due to cluster wake recovery and a smaller wake-influenced
wind direction sector. Our findings do not question wind en-
ergy utilization of any kind. Nevertheless, a detailed assess-
ment of the influence of cluster wakes on AEP of downstream
wind farms during their whole operational life time consid-
ering all planned wind energy activities in the region should
be conducted in the future. This can improve power produc-
tion, offshore resource assessment and consequently reduce
the uncertainties in financing large offshore wind projects es-
pecially in regions with a high level of (planned) wind en-
ergy utilization. Therefore, further research is necessary to
validate wind farm parameterizations in mesoscale weather
models with appropriate wake, power and atmospheric mea-
surements. Especially the influence of atmospheric stability
on cluster wake recovery has to be investigated.

Aside from influence on power, the effect on additional
wind turbine loads can be relevant. We did not perform anal-
ysis of the turbulence in the wake in this study or load simu-
lations on wind turbines affected by far cluster wakes. Since
we find sharp edges between wake flow and free stream con-
tinuing in the wind farm’s power production (Fig. 6), future
research should analyse turbine loads dependent on the clus-
ter wake dynamics, e.g. when a turbine on the wake border

has to speed up and slow down fast caused by cluster wake
dynamics.

4.2 Cluster wake characteristics

Wind turbines are sensitive to the wind conditions over a
wide range of heights defined by the swept rotor area. There-
fore, the investigation of cluster wakes should cover the
whole vertical wind profile at least from lower to upper tip
height. Satellite SAR measurements at the sea surface are
typically transferred to 10 m height. Platis et al. (2018) inves-
tigates cluster wakes at hub height with a research aircraft in
stable stratification, and Siedersleben et al. (2018b) addition-
ally presents measurements in five different height levels (60,
90, 120, 150, 220 m) from the same flight, revealing wake
deficits in all regarded levels. This highlights a vertical ex-
pansion of the wake far above the rotor area (upper tip height:
150 m). We find evidence for cluster wake effects in SAR
images (roughness measurement on the sea surface, interpo-
lation to 10 m a.s.l. – above sea level), lidar measurements
(≈ 24.6 m a.m.s.l., 67.0 m below hub height and 9.0 m below
lower blade tip height) and from the turbines’ power produc-
tion (rotor swept area spans from 33.6 m to 149.6 m a.m.s.l.).
A quantitative comparison of the measured wake strengths
is not possible with our data due to the very different type
of the measurements. Nevertheless we obtain evidence for
wake effects in the boundary layer from the sea surface to
the upper tip height 24 and 55 km downstream, agreeing with
the observed vertical wake extension closer to the generating
cluster presented by Siedersleben et al. (2018b). For a future
campaign we suggest the assessment of the development of
the atmospheric boundary layer from the inflow through a
cluster and in the cluster wake by means of, for example, li-
dar profilers, lidar range height indicator scans (RHI) or flight
measurements for a better understanding of cluster wake de-
velopment and recovery.

All previous investigations of cluster wakes with satellite
SAR suffer from the fact that just one snapshot of the wake
is available for a given situation and no wake dynamics or
their steadiness could be analysed. Nygaard and Newcombe
(2018) investigate a cluster wake at hub height up to 17 km
downstream of a wind farm with dual Doppler radar from the
coast and present a 1 h average wake field. The aircraft mea-
surements performed by Platis et al. (2018) cover the whole
area of the wake along the flight path taking several hours,
indicating a constant behaviour of the wake. We find steady
wake conditions in both presented examples for more then
2.5 h in the lidar data supported by the corresponding power
data. This proves the existence of steady wake effects with a
steady influence on the downstream wind farm for constant
wind directions. Wake cases with changing wind directions
are much harder to analyse since the wake just shortly influ-
ences the farm and will probably not even be detectable in
wind measurements.
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We did not find any evidence for single wind turbine
wakes in the lidar inflow measurements of GT I. This is sup-
ported by the results by Nygaard and Newcombe (2018), who
present dual Doppler radar cross stream flow cuts through a
cluster wake at different downstream distances with disap-
pearing signatures of the single turbines from 6 km down-
stream (unknown stability).

The shapes of the wakes we find could give further hints
on the wake recovery process. While shorter wakes (i.e. from
the BorWin cluster, Fig. 5) are as wide as the generating clus-
ter, wakes originating further away often appear narrower in
the lidar measurements as if they already recovered from the
sides or if the whole wake widened with a resulting decrease
in maximum wake deficit. This is supported by the shapes
of the wakes seen in the SAR wind data in Fig. 9b where
the highest wake deficits are narrower further downstream.
A detailed analysis of this effect is difficult due to changes in
the mesoscale wind field and wakes of neighbouring clusters
overlapping with the cluster wake.

The width of the transition region between free flow and
wake seems to (at least partly) depend on the downstream
position of the wake. In the BorWin wake we sometimes find
high wind speed gradients at the wake’s border about 20 km
downstream (Fig. 6), while in the DolWin wake 50 km down-
stream the transition region was several kilometres wide
(Fig. 10).

The longevity of wakes in stable conditions is further sup-
ported by the investigation of two different converter plat-
form wakes in our lidar measurements ranging at least 9 km
downstream in one case (Fig. 10). Platform wakes have been
observed before, e.g. Chunchuzov et al. (2000) reported a
more than 60 km long wake of a 164 m tall offshore plat-
form in very stable atmospheric conditions analysed with
satellite SAR measurements. We did not investigate the ef-
fect of the wakes of wind farm converter platforms on the
power of neighbouring or distant wind turbines but expect it
to be fairly small compared to a wind turbine wake due to the
lower heights and smaller cross sections of the platforms.

4.3 Cluster wake monitoring

Due to the large areas the cluster wakes take up, their inves-
tigation was mainly based on long-ranging remote-sensing
techniques. Satellite SAR covers large areas and has been
widely used to analyse cluster wakes (Hasager et al., 2015).
Our analysis adds the potential power as a computed local
quantity to the SAR analysis (Fig. 5d), confirming the wake
shape acquired by SAR with turbine power data. This is an-
other hint for the ability of satellite SAR to resolve flow
structures, agreeing with the findings of Schneemann et al.
(2015), who compared structures in concurrent SAR and li-
dar measurements indicating the general ability of SAR to
resolve flow structures with the size of a few hundred me-
tres.

Cluster wakes have not been measured with long-range li-
dar. With an achievable maximum range of 10 km with com-
pact devices, lidar seemed not to be appropriate to measure
far cluster wakes behind a wind farm. We used lidar to mea-
sure incoming far cluster wakes. As opposed to SAR, lidar al-
lows for continuous measurements with scan repetition times
in the order of a few minutes (2.5 and 10 min here). In some
cases the lidar results are clear (e.g. Fig. 6) but in other cases
it is difficult to interpret whether the wind field is influenced
by a wake or not. Here, satellite SAR, when available, proves
very useful to interpret wind monitoring by lidar offering the
possibility to regard the lidar wind field in a wider context
(e.g. the DolWin2 case, Sect. 3.2). Nevertheless, absolute
wind speed measurements by satellite SAR are comparably
imprecise. For the comparison of the shapes of the poten-
tial power in the inflow with the turbines’ power, we had to
correct individual offsets in the SAR wind speeds within the
given measurement accuracy. Schneemann et al. (2015) had
to correct for an offset in SAR winds, comparing it with li-
dar, as well. This inaccuracy could be possibly reduced by a
SAR analysis tuned to the special case. We did not perform
SAR wind calculations ourselves but used already processed
wind data.

The analysis of SCADA data on power losses due to clus-
ter wakes without additional flow information from remote
sensing is difficult since obvious gradients in wind farm
power (Fig. 6) due to cluster wakes are rare and not exactly
stationary (e.g. washed out transition region in averaged lidar
wind field, Fig. 7b). In the DolWin2 case (Fig. 9) it is hardly
possible to judge the contributions of wake effects and effect
of higher turbine efficiency at the farm corners (Barthelmie
and Jensen, 2010) on the higher power of the turbines at the
eastern and western corners of the farm.

For future research on cluster wakes and their influence
on power generation, we propose a combination of differ-
ent measurement techniques complementing with their ad-
vantages, namely satellite SAR, long-range lidar and flight
measurements (aircrafts and drones). Doppler radar and non-
compact lidar systems offering ranges larger than 15 km are
available but have not been deployed in offshore wind farms
so far due to high costs and technical hurdles in the deploy-
ment, orientation and operation of the container-size systems
on offshore structures.

Another important aspect of measurements from offshore
platforms like transition pieces of offshore wind turbines to
be considered is platform movement and the resulting errors
in measurement locations. We found platform tilts of up to
0.1◦ due to turbine thrust depending on wind speed and di-
rection using the method of sea surface levelling (Rott et al.,
2017). This value might be even higher for turbines on a
commonly used monopile foundation compared to the tri-
pod foundation used in GT I. With increasing measurement
ranges, the location error in the measurements grows further.
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5 Conclusions

This paper investigates the question of whether offshore clus-
ter wakes have an influence on power generation of far down-
stream wind farms considering atmospheric stability. There-
fore we analysed two different cases of 24 and 55 km long
cluster wakes approaching the 400 MW offshore wind farm
Global Tech I (GT I) by means of satellite SAR measure-
ments, lidar wind monitoring and analysis of atmospheric
stability and GT I power production.

Long-range Doppler lidar supported by satellite SAR
proves to be a good combination for cluster wake measure-
ments with the lidar providing accurate wind speed monitor-
ing over long periods and SAR contributing with large-area
wind fields for the overall picture.

We find that long-distance wake effects of a wind farm
cluster exist at least 55 km downstream in stable and weakly
unstable stratification. They persist for more than 2.5 h. Dur-
ing this measurement period the average wake deficits are
2.3 m s−1 or 25 % approximately 24 km downstream and
2.2 m s−1 or 21 % approximately 55 km downstream. Single
lidar scans (2.5 min duration) reveal stronger wake deficits of
up to 3.9 m s−1 or 41 % approximately 24 km downstream.

Clear transition regions like edges in the wind separate
wake and free flow 24 km downstream and continue in the
affected wind farm, splitting it into regions of higher power
in undisturbed flow and reduced power in the wake deficit.
Free-flow turbines produce more then two standard devia-
tions, σP, more than the average of the upstream turbines.

This contribution proves the existence of steady power re-
ductions in a far downstream wind farm caused by cluster
wakes. We encourage further investigations on far-reaching
wake shadowing effects for optimized areal planning at sea
and reduced uncertainties in offshore wind power resource
assessment.

Data availability. Lidar data and meteorological data are pub-
lished (Schneemann et al., 2019). GT I SCADA data are confiden-
tial and therefore not available to the public. SAR wind data are
available from https://scihub.copernicus.eu/ (last access: 13 Decem-
ber 2019; Scihub, 2019). Hourly power data for several wind farms
are available from https://www.energy-charts.de/ (last access: 19
December 2019; Fraunhofer ISE, 2019). The New European Wind
Atlas is published at https://map.neweuropeanwindatlas.eu/ (last ac-
cess: 19 December 2019; NEWA, 2019). The OSTIA data set can be
obtained from http://marine.copernicus.eu/ (last access: 13 Decem-
ber 2019; Copernicus marine service, 2019) and radiosonde sound-
ings are available at
http://www.meteociel.fr/ (last access: 13 December 2019; meteo-
ciel.fr, 2019) or
http://weather.uwyo.edu (last access: 13 December 2019; Univer-
sity of Wyoming, 2019).
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Appendix A: Calculation of virtual potential
temperatures

We derived the virtual potential temperature used in Sect. 2.4
from the available measurements on the TP. We adapted the
following methodology mainly from Etling (2008). We need
the following:

– Rd = 287 J K−1 kg−1 (specific gas constant of dry air);

– Rv = 461 J K−1 kg−1 (specific gas constant of water
vapour);

– ε =
Rd
Rv
= 0.622 (ratio between the specific gas con-

stants for dry air Rd and water vapour Rv);

– κP = 0.286 (Poisson constant in dry air).

The saturation vapour pressure in pascals (Pa) dependent on
the temperature in kelvin (K) follows from the Magnus equa-
tion,

es(T )= 100.0 · 6.1 · 10
(

7.45·(T−273.15)
T−38.15

)
. (A1)

The partial pressure of water vapour in the air dependant
on the relative humidity RH reads as

e = RH · es/100.0, (A2)

while the mixing ratio is

rv = ε ·

(
e

p− e

)
. (A3)

With the specific humidity

q =
rv

1+ rv
(A4)

and the potential temperature

2= T

(
100000Pa

p

)κP

, (A5)

we approximate the virtual potential temperature as

2v =2 · (1.0+ 0.61 · q). (A6)

While the virtual potential temperature at the TP, 2v,TP,
could be derived directly from the available measurements,
we assume the relative humidity and the air temperature di-
rectly above the sea to be RH0 = 100 % and T0 = TSST, re-
spectively, to derive the virtual potential temperature at sea
level, 2v,SST. Furthermore we calculate the air pressure at
sea level as

p0 = pTP ·

(
TSST− γ · zTP

TSST

) −g
γRd
, (A7)

assuming a polytropic atmosphere and using the air temper-
ature gradient

γ =
TSST− TTP

zTP
. (A8)
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Detecting long-range wind farm wakes
Using power ratio of front-row turbines

Not indicative of impact on AEP
• Single wind speed only
• Only few wind directions affected
• Results only shown for front row turbines

13.6 km
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These are really wakes!
The effect is absent before the neighbors were built

8.6 km
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These are really wakes!
The effect is absent before the neighbors were built
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Observed vs. modelled neighbor wake impact
TurbOPark better captures long-distance wakes
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Observed vs. modelled neighbor wake impact
TurbOPark better captures long-distance wakes



8

Wind speed dependence
Higher wind speeds reduce the neighbor wake impact
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Stability dependence @ 8 m/s
With Monin-Obukhov length estimated from ERA5 data
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Generalizing to multiple cases
37 neighbor wind farms in Northern Europe
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Calculating the wake impact from the neighbor
Only front row, only single wind speed

• Front row wake impact = 1 - 0.5(A + B
-1

)

• Determine this for 

• All 37 wind farm pairs

• SCADA data

• Park model

• TurbOPark model

A

B
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Dependence on distance
Neighbor wake impact decreases at larger distances
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Sensitivity to neighbour configuration
Same turbines, same distance, different shapes 

Model results
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Dependence on distance
TurbOPark agrees well. Park underestimates the impact



Impact on annual energy production
Hypothetical example

Separation 15 km
External wake loss 3.8%

Separation 5 km
External wake loss 7.8%

Separation 5 km
External wake loss 3.4%

Target

Neighbour
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Cluster wakes detected

13.6 km

Cluster wakes extend >50 km

Conclusions

Cluster wake dependencies

Wind speed

Stability

Neighbour configuration

Wind rose



Thank you 
for listening!

@orsted.com
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